Раскрывая 140-летний секрет в физике

Важный прорыв в физике позволит изучить физические характеристики полупроводников в гораздо больших подробностях. Возможно, это поможет ускорить развитие полупроводниковой технологии следующего поколения.

Перевод статьи авторов из IBM Research.

Авторы:

Oki Gunawan — Staff Member, IBM Research

Doug Bishop — Characterization Engineer, IBM Research

Полупроводники являются основными строительными блоками сегодняшнего цифрового, электронного века, обеспечивая для нас многообразие устройств, приносящих пользу в нашу современную жизнь, таких как компьютер, смартфоны и иные мобильные устройства. Улучшения в функциональности и производительности полупроводников позволяют также обеспечивать применения следующего поколения полупроводников для вычислений, распознаваний и преобразований энергии. Исследователи уже долго борются над преодолением ограничений нашей способности полностью понять электронные заряды внутри полупроводниковых устройств и продвинутых полупроводниковых материалов, сдерживающих нашу возможность далее двигаться вперёд.

В новом исследовании в журнале Nature научно-исследовательское соавторство, возглавляемое IBM Research, описывает захватывающий прорыв в раскрытии 140-летней тайны в физике, той, которая позволит нам изучить физические характеристики полупроводников в гораздо больших подробностях и обеспечить развитие новых улучшенных полупроводниковых материалов.

Чтобы действительно понять физику полупроводников, мы должны сначала познать фундаментальные свойства носителей заряда внутри материалов, отрицательные ли это частицы или положительные, их скорость в приложенном электрическом поле и насколько плотно они упакованы в материале.

Физик Эдвин Холл нашёл способ определять эти свойства в 1879 году, когда он обнаружил, что магнитное поле отклонит движение электронных зарядов внутри проводника, и что величина отклонения может быть измерена как разница потенциалов перпендикулярная к направленному потоку заряженных частиц, как показано на рисунке Figure 1a. Это напряжение, известное как холловское напряжение, открывает значимую информацию о носителях заряда в полупроводнике, включая то являются ли они отрицательными электронами или положительными квазичастицами, называемыми “дырками”, на сколько быстро они двигаются в электрическом поле, или их “подвижность” (µ), и их концентрацию (n) внутри полупроводника.

sekret1.png

140-летняя тайна

Через десятилетия после открытия Холла исследователи также обнаружили, что они могут производить измерения эффекта Холла со светом — эксперименты, называемые фото-Холл, см. рисунок Figure 1b. В подобных экспериментах световое освещение генерирует множественные носители или пары электрон-дырки в полупроводниках. К сожалению, наше понимание основного эффекта Холла обеспечивало постижение только основных носителей заряда (или носителей большинства). Исследователи были неспособны извлечь параметры обоих носителей (основного и неосновного) одновременно. Подобная информация является ключевой для многих приложений, имеющих отношение к свету, таких как солнечные панели и другие оптоэлектронные устройства.

Исследование IBM Research в журнале Nature раскрывает один из долго хранимых секретов эффекта Холла. Исследователи из Корейского института передовых технологий (Korea Advanced Institute of Science and Technology, KAIST), Корейского исследовательского института химических технологий (Korea Research Institute of Chemical Technology, KRICT), Дюкский университет (Duke University), и IBM обнаружили новую формулу и технику, которая позволяет нам одновременно извлекать информацию об основном и неосновном носителе, такую как их концентрация и подвижность, равно как и получить дополнительные сведения о продолжительности существования носителя, диффузионной длине и процессе рекомбинации.

Подробнее
Пожалуйста, оцените статью:
Ваша оценка: None Средняя: 5 (6 votes)
Источник(и):

Хабр