Компьютеры будущего: основные концепты

Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.

Какое-то время продолжим трудится на общее благо по адресу https://n-n-n.ru.
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.

Спасибо, ждём вас на N-N-N.ru

Современные компьютеры работают все медленнее, не справляясь с задачами, которые ставит перед ними человек. Ученые уже разрабатывают вероятностные процессоры, молекулярные, биологические, оптические и квантовые компьютеры, которые придут устаревшим машинам на смену.

Главную роль в устройстве компьютера играют электроны. Оседая в ячейках памяти и регистрах процессора, они формируют информацию, с которой работает пользователь. Но скорость электронов конечна и не очень велика. И время, которое необходимо электрону для прохождения по системе, становится решающей преградой в дальнейшем повышении производительности. Выход можно найти либо в уменьшении размеров систем, либо в новом подходе к их устройству. И поскольку бесконечно уменьшать размеры нельзя, в ход идут новые алгоритмы работы и попытки заменить электроны другими частицами.

Новые алгоритмы для старых электронов

Для задач, связанных с вычислением вероятностей, инженеры американской компании Lyric Semiconductor предлагают использовать процессоры, основанные на принципах байесовской вероятности. Они могут применяться в поисковых системах, системах финансового моделирования и биржевого прогнозирования, обработки биологических и медицинских данных. Такой подход позволяет распределить нагрузку между узлами системы, увеличить производительность и сократить время выполнения поставленных задач.

cnews-lyric_a1686-1.jpg Компания Lyric Semiconductor создала первый вероятностный процессор

Принцип распределения нагрузки используют при обработке больших массивов данных. При таком подходе множество компьютеров, связанных между собой, работают как единая система. Например, самый «шустрый» процессор на сегодня имеет пиковую производительность в 24 TFlop/s, в то время как распределенная система научно-исследовательского вычислительного центра МГУ имеет пиковую производительность 420 TFlop/s.

Также для повышения скорости вычислений все больше начинают использовать процессоры видеокарт. Преимущество в скорости графическим процессорам дает архитектура, разработанная именно для вычислительных операций. Используя специальное ПО, можно перенаправить основную вычислительную нагрузку с CPU на GPU.

Тем не менее все ближе тот момент, когда кремниевые процессоры не смогут справляться с поставленными задачами, даже с учетом распределения нагрузок и использования архитектур графических и дополнительных процессоров. Выход может быть найден в концептуально новых системах, не ограниченных скоростью электронов.

Компьютеры нового тысячелетия

На данный момент активно ведутся разработки молекулярных, оптических и квантовых устройств, а также ДНК-компьютеров. Сложность разработки таких систем заключается в необходимости перестроения всех основных узлов: центрального процессора, элементов памяти, устройств ввода/вывода.

В основе молекулярных компьютеров лежат бистабильные молекулы, которые могут находится в двух устойчивых термодинамических состояниях. Каждое такое состояние характеризуется своими химическими и физическими свойствами. Переводить молекулы из одного состояния в другое можно с помощью света, тепла, химических агентов, электрических и магнитных полей. По сути, эти молекулы являются транзисторами размером в несколько нанометров.

Благодаря малым размерам бистабильных молекул можно увеличить количество элементов на единицу площади. Другим достоинством молекул является малое время отклика, которое составляет порядка 10–15 с. Сами бистабильные переключатели управляются световыми, электрическими импульсами или электрохимическими реакциями. Соединяют функциональные элементы нанотрубки или сопряженные полимеры.

Другой тип компьютеров нового поколения также основан на молекулах, но уже молекулах ДНК. Впервые ДНК–вычисления были проведены в 1994 г. Леонардом Эдлеманом (Leonard Adleman), профессором Университета Южной Калифорнии, для решения задачи коммивояжера. В ДНК–компьютерах роль логических вентилей играют подборки цепочек ДНК, которые образуют друг с другом прочные соединения. Для наблюдения состояния всей системы в последовательность внедрялись флуоресцирующие молекулы. При определенных сочетаниях свечения молекул подавляли друг друга, что соответствовало нулю в двоичной системе. Единице же соответствовало усиленное свечение флюоресцентов. Возможно строить последовательности цепочек, в которых выходной сигнал одной цепочки служит входным сигналом другой.

cnews-maya_ii_144da-2.jpgMAYA-II в руках исследователя. Дисплей на заднем плане показывает результат одной из игр в крестики-нолики. ДНК-компьютер (вместо ноликов он играл красными точками), как видим, выиграл у человека (синие точки, иначе — крестики)

Главное достоинство такого компьютера – работоспособность внутри тела человека, что дает возможность, например, осуществлять подачу лекарства там, где это необходимо. Также такие компьютеры позволят моментально производить идентификацию заболеваний в организме.

Еще два варианта компьютера будущего – фотонный и квантовый компьютеры. Первый работает на оптических процессах, и все операции в нем выполняются посредством манипуляции оптическим потоком. Преимущества такого компьютера заключаются в свойствах световых потоков. Скорость их распространения выше, чем у электронов, к тому же взаимодействие световых потоков с нелинейными средами не локализовано, а распределено по всей среде, что дает новые степени свободы (по сравнению с электронными системами) в организации связей и создании параллельных архитектур. Производительность оптического процессора может составлять 1013 – 1015 операций в секунду. На сегодняшний день есть прототипы оптических процессоров, способные выполнять элементарные операции, но полноценных и готовых к производству компьютеров нет.

cnews-105943_1846_real-3.jpgФотонный нанопереключатель

cnews-105916_1840_real-4.jpgПереключатель в рабочем положении

cnews-105851_1826_real-5.jpgСброс фотонного нанопереключателя

cnews-105821_1819_real-6.jpgМатрица с нанофотонными ключами

Квантовый компьютер основан на законах квантовой механики. Для выполнения операций квантовый компьютер использует не биты, а кубиты – квантовые аналоги битов. В отличие от битов, кубиты могут одновременно находится в нескольких состояниях. Такое свойство кубитов позволяет квантовому компьютеру за единицу времени проводить больше вычислений. Область применения квантового компьютера – переборные задачи с большим числом итераций.

Проблема создания квантового компьютера

Все прототипы компьютеров будущего – ДНК-компьютеры, молекулярные и фотонные – разные грани одного целого – идеи создания полнофункционального квантового компьютера. Все микрочастицы, будь то кванты, атомы или молекулы, могут быть описаны волновой функцией состояния и подчиняются единым законам квантовой механики. Таким образом, работы над каждым типом компьютеров базируются на одном фундаменте. Есть у них и общие проблемы. Необходимо научиться объединять частицы в совокупности и работать как с каждой частицей в отдельности, так и с совокупностью в целом. К сожалению, на сегодняшний день технологии не позволяют производить такие манипуляции. К тому же система управления должна поддерживать масштабируемость системы частиц, благодаря которой можно наращивать мощность компьютера. Решение этой проблемы станет очередным прорывом в науке.

Над созданием квантового компьютера работают в лабораториях всего мира, в том числе и российских. Ведущие научные сотрудники Казанского физико-технического института Сергей Моисеев и Сергей Андрианов прокомментировали текущую ситуацию в этой области. С 2001 года они начали вести работы в области квантовой памяти и на сегодняшний день исследуют новые твердотельные материалы, пригодные для хранения кубитов. Также решается задача длительности хранения информации. Пока что это время составляет всего несколько миллисекунд. На вопрос, почему квантовый компьютер до сих пор не существует, отвечает Сергей Моисеев:

«Насколько я себе представляю, дело в том, что сложность этой проблемы была не сразу осознана. После того как был проведен первый цикл исследований, были сформулированы проблемы, в том числе и физические, которые предстояло решить. На данный момент создание квантового компьютера напоминает своего рода современный Манхэттенский проект. Цель – создать квантовый компьютер, оперирующий 1000 кубитами, с возможностью его масштабируемости».

cnews-105238_1739_real-7.jpgЭлементы квантового компьютера Orion компании D-Wave: собранный квантовый процессор

cnews-105222_1735_real-8.jpg…электронные модули для связи с квантовым чипом

cnews-105126_1718_real-9.jpg…кремниевый квантовый чип, оперирующий 16 кубитами

Однако развитие квантового компьютера тормозят не только технические проблемы, но и экономические. Долгое время на решение этой задачи выделялось крайне мало средств, особенно в России. Проект, в случае его успеха, начнет приносить доход спустя длительное время. При этом требуются крупные капиталовложения. Сейчас, когда преимущества квантового компьютера стали очевидны, начали появляться и инвестиции, но их доля относительно других отраслей по-прежнему невелика.

Что же касается ситуации в мире на сегодня, уже есть модель, работающая на двух кубитах. Конечно это не 1000, к которым стремятся ученые, но он уже может найти множители, на которые разлагается число. Потенциал же килокубитного квантового компьютера огромен. Он сможет за минуты просчитывать данные, на которые у нынешних систем уйдут годы, а то и десятилетия. С точки зрения информационной безопасности, как только будет построен квантовый компьютер, все системы защиты данных с открытым ключом рухнут, так как квантовый алгоритм позволяет быстро взломать коды. Самый производительный нынешний компьютер, если и решит эту задачу, то за несколько лет. Сегодня криптозащита держится только по той причине, что квантовый компьютер находится в самом начале своего развития. И 2–3-х кубитов не достаточно для взлома шифров.

Предвидя такое развитие событий, компании задумываются о квантовой криптографии, против которых компьютер нового поколения будет бессилен. Особенность квантовой криптозащиты в том, что при попытке «подслушать» информацию она разрушается по закону неопределенности Гейзенберга. Таким образом, при попытке получить доступ к зашифрованному потоку, информация в нем будет утеряна. Однако не стоит считать неуязвимость квантовой криптозащиты абсолютной, как и в любой системе, в ней есть свои слабые места.

На данный момент в Швейцарии уже действует квантовый интернет, протяженность сети составляет 100 км. Уже три года он связывает Женеву и Цюрих. В основе передачи информации такой сетью лежит квантовая сцепленность – явление при котором квантовые состояния двух или более объектов влияют друг на друга, даже если они разнесены в пространстве. Достоинство сети – в ее безопасности. При попытке «подслушать» трафик сети извне сигнал искажается, что сигнализирует принимающей стороне о попытке перехвата. Для того чтобы проложить такой интернет на больших расстояниях, требуется квантовый репитер, который будет пересылать сигнал. И в Европе уже созданы сообщества по работе над ним.

Сергей Андрианов дополняет:

«Ближайшая реализация квантового компьютера – система finger printing в научном мире известная, как метод характеристических признаков. Она будет содержать примерно 20 – 30 кубитов и предназначена для выделения "струны» – последовательности данных, содержащей небольшой бит информации – неких характеристических признаков – из базы данных. И если сравнить эту струну со струной из другой базы, то с определенной долей вероятности можно определить, одинаковые эти базы данных или нет. В течение нескольких ближайших лет фирма HP собирается представить такой компьютер, работающий на квантовых точках".

Нити с определенной вероятностью довольно точно описывают исходную базу. И если две выбранные последовательности признаков совпадают, то можно предположить, что и исходные базы данных одинаковы. Например, при сканировании сетчатки глаза в системе контроля доступа можно снимать информацию не обо всей сетчатке, а только определенные параметры. Совокупность таких параметров и будет струной. При последующей идентификации можно снять те же параметры с представленной сетчатки и, если последовательности параметров совпадут, можно предположить, что сетчатки одинаковы, а стало быть – принадлежат одному человеку.

Автор: Виталий Краснов / CNews

Пожалуйста, оцените статью:
Ваша оценка: None Средняя: 4.6 (45 votes)
Источник(и):

Cnews.ru