Первый в мире монорельсовый нанопоезд

Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.

Какое-то время продолжим трудится на общее благо по адресу https://n-n-n.ru.
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.

Спасибо, ждём вас на N-N-N.ru

-->

Нано-мото-моно-рельс

Создан первый в мире монорельсовый нанопоезд. Нагрев углеродных нанотрубок электротоком заставляет челнок перемещаться с одной «станции» к другой. Учёные обещают скорости до 100 м/c, хотя пока за одну секунду удаётся пройти лишь один микрон.

mono_rels.jpg

Первый в мире грузовой транспорт молекулярного масштаба смог преодолеть расстояние в 500 нанометров вдоль монорельсовой дороги, имеющей соответствующие масштабы; путешествие заняло примерно полсекунды. Перефразируя Нила Армстронга, можно сказать, что этот шаг, микроскопический для человека, – огромный прыжок для нанотехнологий.

Уже на заре нанотехнологической науки ученые говорили в первую очередь о перспективах создания молекулярных машин, которые могут выполнять определенные задачи, перемещаться и по команде создавать себе подобных. Ранее учёным уже удавалось создавать наноразмерные устройства, выполняющие простейшие команды и прототипы самособирающихся нанороботов. Работа Адриана Бактольда и его коллег из Каталонского института нанотехнологий в Барселоне – первый серьёзный успех на «транспортном» направлении.

Идея перемещения различных грузов с помощью транспортных молекул, вообще говоря, не изобретение человека. Живые клетки используют такую методику для транспортировки необходимых молекул уже не один миллиард лет. Их транспортные механизмы построены на основе белковых молекул, перемещающихся вдоль определенных, заранее намеченных направлений внутри живой системы.

Учёным до сих пор удавалось направленное перемещение наноразмерных объектов лишь вдоль канавок на гладкой поверхности. Бактольду удалось продвинуться существенно дальше. Работа учёного и его коллег принята к публикации в Science.

Графен – слой атомов углерода, соединённых посредством sp² связей в гексагональную двумерную кристаллическую решётку. Его можно представить как одну плоскость графита, отделённую от объёмного кристалла. По оценкам графен обладает большой механической жёсткостью и хорошей теплопроводностью (~1 ТПа и ~5×103 Вт·м−1·К−1 соответственно). Хорошая подвижность носителей тока при комнатной температуре делает его перспективным материалом для использования в самых различных приложениях, в частности, как будущую основу наноэлектроники и возможную замену кремния в интегральных микросхемах.

Основной из существующих в настоящее время способов получения графена основан на механическом отщеплении или отшелушивании слоёв графита. Он позволяет получать наиболее качественные образцы с высокой подвижностью носителей. Этот метод не предполагает использования масштабного производства, поскольку это ручная процедура. Другой известный способ – метод термического разложения подложки карбида кремния гораздо ближе к промышленному производству. Поскольку графен впервые был получен только в 2004 году, он ещё недостаточно хорошо изучен и привлекает к себе повышенный интерес.

Данный материал не является просто кусочком других аллотропных модификаций углерода: угля, графита, или алмаза – из-за особенностей энергетического спектра носителей он проявляет специфические, в отличие от других двумерных систем, электрофизические свойства.

http://www.gazeta.ru/…692685.shtml?…

Основа успеха – один из самых перспективных в нанообласти материал, углеродные нанотрубки. Собственно, первый в мире наномонорельс состоит из пары таких трубок. Испанским учёным удалось насадить один толстый и короткий фрагмент нанотрубки на другой – более тонкий и длинный. Получилось что-то наподобие муфтового соединения.

В нанометровых масштабах практически отсутствует трение материалов друг о друга, да и само понятие «трения» между молекулами существенно сложнее. Благодаря этому толстый обрезок нанотрубки – этот первый монорельсовый наночелнок, может свободно вращаться вокруг своей оси и перемещаться вдоль самого монорельса.

В 2003 году сотрудники Калифорнийского университета уже использовали такую конструкцию, чтобы сделать нечто вроде нанопропеллера с единственной лопастью – они также смогли насадить одну нанотрубку на другую и прикрепили к «ротору» этой конструкции наноразмерный лепесток слоистого материала. Однако использоваться в качестве транспортного средства такой пропеллер не мог – из-за тепловых колебаний «ротор» и «статор» беспорядочно вращались друг вокруг друга, и направить движение в определённом направлении было практически невозможно.

Заслуга Бактольда как раз и состоит в том, что его команде удалось обуздать тепловые колебания, причём не просто как-то «подавить» их, а использовать энергию этих случайных колебаний для направленного перемещения грузов.

Пары концов целого набора наномонорельсов ученые прикрепили к металлическим поддерживающим платформам, в то время как челноки, насаженные на трубку, висели, по сути, в воздухе. Затем исследователи прикрепили к челнокам по крупинки золота – однако вовсе не в качестве ценного груза, а как часть механизма.

Как несложно догадаться, за этими манипуляциями последовало приложение разности потенциалов к концам углеродного монорельса, в результате чего в системе потек электрический ток. При этом большинство из наночелноков начинали движение в сторону ближайшей металлической пластины, а некоторые оставались вращаться на прежнем месте. Понаблюдать за их перемещением и вращением можно в этих видеороликах: 1, 2, 3, 4 и 5 (QuickTime movies).

nanomonorail300.jpg

Перемещение наночелнока с наногрузом золота по наномонорельсу

Принцип работы «нанодвигателя» оказался очень интересным. Как признался Бактольд в интервью Nature, сначала учёные решили, что перемещение транспортников происходит непосредственно под влиянием движущихся электронов. Однако таким образом невозможно было объяснить, почему при приложении одного и того же напряжения – и следовательно, течении тока одного и того же направления, челноки разъезжались в разные стороны.

Как оказалось, действие электронов сводилось к разогреву материала и увеличению интенсивности его тепловых колебаний. Направление движения наночелноков определялось градиентом температуры вдоль наномонорельса. Градиент поддерживался металлическими пластинами, постоянно отводящими тепло от концов углеродного провода. Таким образом, монорельс колебался наиболее интенсивно в середине, что и заставляло челнок двигаться по направлению к ближайшему концу нанотрубки.

Поток тепла от горячего участка нанотрубки к холодному технически можно описывать, как обмен так называемыми фононами – квантами волн упругости. И можно сказать, что именно эти кванты «двигали» наночелнок.

nanorotor300.jpg

Вращение наночелнока с наногрузом золота на наномонорельсе

Скорость перемещения челнока в эксперименте – около 1 микрона в секунду. Примерно с такой же и даже чуть большей скоростью работают и транспортные молекулярные системы живых систем. Однако, по подсчётам учёных, подобные наномонорельсовые системы могут двигаться существенно быстрее, преодолевая расстояние в один микрон за одну стомиллионную долю секунды. Для того чтобы создать такие устройства, размер челнока и рельса придётся ещё более уменьшить, полагают создатели прототипа. Кроме того, подойдёт он далеко не для каждого груза – например, частички золота необходимый для повышения скорости нагрев нанотрубки уже не выдержат.

Алексей Петров

http://www.gazeta.ru/…692685.shtml

bachtold.jpg

Adrian Bachtold, Institut de Microelectronica de Barcelona, Centro Nacional Microelectrónica, Universitat Autonoma de Barcelona, Barcelona, Spain

Adrian Bachtold, 33 years old, is currently on the scientific staff at the Catalan Institute of Nanotechnology and the Centro Nacional Microelectrónica in Barcelona, Spain, and Principal Investigator of the Quantum Nano-Electronic Group…

http://www.nanocat.org/…Bachtold.pdf

http://www.esf.org/…achtold.html

Да, любопытная игрушка… Однако именно с таких вот «игрушек» порою и начинаются великие открытия. Оставим специалистам объяснение и дальнейшее использование таких «штучек», а сами восхитимся человеческой изобретательностью и выдумкой…