Физики поворачивают графен

Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.

Какое-то время продолжим трудится на общее благо по адресу https://n-n-n.ru.
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.

Спасибо, ждём вас на N-N-N.ru

Исследователи из США и Великобритании объединили свои усилия в изучении того, почему свойства многослойного графена разнятся от образца к образцу. По мнению ученых, ответ следует искать во взаимной ориентации одноатомных плоскостей друг относительно друга. Данное открытие не только объясняет существовавшие ранее загадки, но и открывает пути для управления электронными свойствами удивительного материала для практических применений.

Графен представляет собой уникальный материал, состоящий из атомов углерода, образующих двумерную гексагональную кристаллическую решетку. За счет отсутствия в его кристаллах третьего измерения, графен обладает целым рядом уникальных физических свойств, не наблюдавшихся у «многослойных» форм углерода. К примеру, свободные носители тока в графене (электроны) движутся со скоростями близкими к скорости света и практически не рассеиваются атомами, находящимися в узлах кристаллической решетки (т.е. ведут себя как релятивистские дираковские фермионы, не обладающие массой покоя). Это и другие свойства графена делают этот материал отличной основой для создания ультрабыстрых электронных устройств будущего.

Теоретически, несколько слоев графена, объединенные в один кристалл (так называемый «многослойный» графен), не должны содержать диракоских фермионов, т.к. в данном случае кристаллическая решетка теряет свой двумерный характер. Однако подобные частицы были обнаружены в многослойном графене, выращенном методикой осаждения углеродных атомов на поверхности подложки. Это открытие весьма озадачило научный мир.

b_1092_1.jpg Рис. 1. Изображение многослойного графена, отдельные плоскости которого повернуты друг относительно друга на 28 градусов. Левое изображение получено при помощи методик сканирующей туннельной микроскопии; правое – смоделировано.

Теперь совместная группа ученых из Rutger University, Massachusetts Institute of Technology (США) University of Manchester (Великобритания) показала, что ключевую роль в обнаружении дираковских фермионов играет даже не количество одноатомных кристаллических слоев, а взаимная ориентация отдельных плоскостей друг относительно друга.

Подробные результаты экспериментов приведены в журнале Physical Review Letters.

В своих экспериментах команда создавала многослойный графен путем осаждения атомов углерода на никелевой поверхности. После чего графен отделялся от поверхности химическими методами и изучался при помощи просвечивающего электронного микроскопа. В каждом случае в первую очередь оценивался один и тот же параметр – взаимная ориентация двумерных кристаллических плоскостей друг относительно друга. В последствие, наличие или отсутствие фермионов определялось спектроскопией уровней Ландау (в присутствии внешнего магнитного поля, приложенного к образцу).

Команда обнаружила, что когда плоскости были повернуты друг относительно друга не на 60 градусов (как бывает при наиболее естественной схеме), а всего на 22 градуса от этого «естественного положения», свободные электроны вели себя как фермионы Дирака в однослойном графене. При меньших углах вращения плоскостей друг относительно друга (приблизительно при 4 градусах), скорость свободных носителей тока падает до 80% (от скорости в однослойном графене). Третий созданный учеными образец имел угол взаимной ориентации плоскостей порядка 1,2 градусов; при этом не наблюдалось никаких фермионов.

По мнению ученых, явление наблюдается, потому что вращение плоскостей нарушает кристаллическую периодичность, что снижает сцепленность атомных плоскостей и приводит к тому, что каждая из них «работает» как обособленная.

В ближайшем будущем ученые планируют повторить измерения при произвольном угле ориентации кристаллических плоскостей. Впоследствии эти знания помогут лучше проектировать электронные устройства на базе многослойного графена.

Пожалуйста, оцените статью:
Ваша оценка: None Средняя: 4.9 (8 votes)
Источник(и):

1. nanotechweb.org

2. sci-lib.com