Испанскими и американскими учеными предложена принципиально новая конструкция наноустройства

Квантовый источник света, расположенный между двумя металлическими наночастицами.

Совместная исследовательская группа из Испании и США предложила принципиально новую конструкцию квантовой системы, состоящей из квантового эмиттера света, размещенного между двумя металлическими наночастицами. Предложенная схема может в будущем использоваться для создания инновационных устройств, т.к. она показывает весьма интересный нелинейный оптический отклик.

В последние 10 лет научными группами по всему миру активно изучались взаимодействия света и материи. Более того, научный мир преуспел в создании устройства, которое могло бы контролировать эти взаимодействия. Для этого отлично подходят металлические наноструктуры и их всевозможные ассоциации, т.к. эти структуры позволяют блокировать световую волну в объеме, характерные размеры которого много меньше длины волны излучения. Эти системы также хорошо взаимодействуют с другими элементами фотоники, например, квантовыми источниками.

Благодаря развитию способов производства наноструктур, в данный момент мы приближаемся к масштабу, в котором квантовое поведение подобных структур может быть чрезвычайно важным. Это новая область исследований, известная как квантовая плазмоника.

Работая в этой области, совместная группа ученых из Испании и США изучали системы, состоящие из квантовых излучателей, размещенных в зазоре между двумя металлическими наночастицами. В рамках экспериментов они наблюдали интересные нелинейные явления, обусловленные фермионным характером квантового источника. Подробные результаты их работы были опубликованы в журнале Nano Letters.

Для расчета эксперимента ученые использовали модели, основанные на функции Зубарева-Грина, предложенной в 1960-х годах русским физиком Д.Н. Зубаревым для решения различных задач статистической физики, а также на представлении о том, что на поверхности металлических наночастиц образуются так называемые плазмоны – коллективные колебания электронов, способные распространяться по поверхности металла и сильно взаимодействовать со светом. Методология была адаптирована для случая оптического отклика плазмонов, сильно взаимодействующих с экситонами (парами «электрон-дырка»).

Теория предсказывает, что, в зависимости от начального состояния квантового источника, существует возможность «включения» и «выключения» связи между самим источником и плазмонами металлической наночастицы. В поставленном эксперименте взаимодействие плазмонов и экситонов в квантовом источнике света было возможно, благодаря сильным электромагнитным полям, формирующимся в зазоре между квантовыми точками. В своей модели ученые описывают это взаимодействие с помощью двух членов уравнения: один связан с формированием плазмонов и аннигиляцией экситонов, второй – с обратным процессом.

Команда планирует использовать свой подход для исследования более сложных систем. По мнению ученых, предложенная ими методика расчета могла бы быть применена для систем, где плазмоны взаимодействуют с экситонами, в частности, для плазмонных транзисторов, модуляторов и квантово-информационных устройств. Кроме того, она могла бы использоваться для разработки новых оптических устройств, таких как оптические коммутаторы.

Пожалуйста, оцените статью:
Ваша оценка: None Средняя: 4.8 (12 votes)
Источник(и):

1. nanotechweb.org

2. sci-lib.com