Изучены сильнолегированные квантовые точки
Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.
Какое-то время продолжим трудится на общее благо по адресу
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.
Спасибо, ждём вас на N-N-N.ru
Легирование полупроводников сыграло одну из ключевых ролей, предопределивших столь широкое применение полупроводников в электронике. В настоящее время внимание ученых привлекает получение и исследование легированных полупроводников c отличной от трехмерной размерностью, в частности, нульмерных (квантовые точки). Свою лепту в расширение наших знаний в этой области внес коллектив израильских ученых. В своей работе они исследовали легированные медью, серебром и золотом квантовые точки арсенида индия.
Чтобы проследить, как степень легирования влияет на расположение уровня Ферми и ширину запрещенной зоны, авторы статьи прибегли к помощи сканирующего туннельного микроскопа. Так, в случае нелегированной квантовой точки при положительных напряжениях наблюдается дуплет, соответствующий дважды вырожденному уровню 1Se, а также мультиплет, соответствующий уровню 1Pe. При отрицательных напряжениях наблюдается более сложная картина, что обусловлено туннелированием через состояния валентной «зоны» (разумеется для нульмерных наноструктур идет речь не о зонах, а группах дискретных уровней). При легировании расположение пиков и их мультиплетность изменяются. Так, при легировании золотом ширина запрещенной зоны остается неизменной, лишь размываются пики, что подтверждает вхождение атомов золота в структуру квантовой точки. В случае легирования медью и серебром на спектрах появляются плечи, соответствующие примесным уровням в запрещенной зоне.
Рис. 1. Спектры, полученные с помощью сканирующего туннельного микроскопа, соответствующие нелегированной квантовой точке (черный), легированной золотом (зеленый), серебром (красный) и медью (синий). Значения по оси ординат пропорциональны плотности состояний.
Чтобы оценить расположение уровня Ферми, необходимо измерить разницу напряжений между краем «зоны» и нулевым напряжением. В случае квантовых точек, легированных золотом, как и в случае нелегированных точек уровень Ферми расположен посередине. В случае допирования медью уровень Ферми смещается в сторону «зоны» проводимости, а в случае серебра – в сторону валентной «зоны».
Рис. 2. а) ПЭМ-микрофотография кристаллической наноточки InAs, допированной золотом, диаметром 3,3 нм. b) Спектры поглощения (на вставке испускания) наноточек, легированных медью (синий) и серебром (красный) и их сравнение со спектром нелегированной точки (черный).
Изменения в зонной структуре отразились и на оптических спектрах квантовых точек. В легированных медью квантовых точках в спектрах поглощения наблюдается гипсохромный сдвиг (эффект Мосса-Бурштейна), а в спектрах наноточек, допированных серебром, напротив, наблюдается батохромный сдвиг, впрочем также обусловленный наличием примесных уровней («хвост» Урбаха).
Особое внимание ученые уделили исследованию зависимости степени легирования на электронную структуру легированных квантовых точек. Так, например, при повышении степени легирования монотонная зависимость смещения в спектре поглощения от обратного радиуса квантовой точки сменяется немонотонной, что объясняется пересечением примесным уровнем края «зоны» при повышении степени легирования.
Рис. 3. Расчет влияния степени легирования на электронную структуру квантовых точек. а) Зависимость плотности состояний от положения примесного уровня (сплошная линия – n-тип проводимости, пунктирная – p-тип проводимости) .b) Зависимость смещения на спектрах поглощения от обратного радиуса квантовой точки (сплошная линия – n-тип проводимости, пунктирная – p-тип проводимости).
Результаты исследований опубликованы в статье:
David Mocatta, Guy Cohen, Jonathan Schattner, Oded Millo, Eran Rabani and Uri Banin Heavily Doped Semiconductor Nanocrystal Quantum Dots. – Science. – 1 April 2011. – Vol. 332 – no. 6025. – pp. 77–81; DOI: 10.1126/science.1196321.
- Источник(и):
-
1. nanometer.ru
- Войдите на сайт для отправки комментариев