Прорыв в РНК-нанотехнологиях: получены стабильные трехмерные РНК-наноструктуры

Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.

Какое-то время продолжим трудится на общее благо по адресу https://n-n-n.ru.
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.

Спасибо, ждём вас на N-N-N.ru

Ученые смогли преодолеть большое препятствие на пути к использованию генетического материала РНК в нанотехнологиях – области, занимающейся разработкой машин в тысячи раз меньшего размера, чем толщина человеческого волоса, где сейчас доминирует ДНК. Полученные ими результаты, способные ускорить использование РНК-нанотехнологий в области медицины, представлены в журнале ACS Nano.

3_33.jpg Профессор биомедицинской инженерии
Университета Цинциннати (University of
Cincinnati) доктор философии Пейсян Го
(Peixuan Guo).
(Фото: science-bits.blogspot.com)

Профессор биомедицинской инженерии Университета Цинциннати (University of Cincinnati) доктор философии Пейсян Го (Peixuan Guo) и его коллеги отмечают, что, имея общие химические свойства, ДНК, двухцепочечный генетический «план жизни», и РНК, ее одноцепочечная «кузина», могут использоваться в качестве строительных блоков для создания наноструктур и наноустройств. В некоторых отношениях РНК даже имеет преимущества перед ДНК. Область ДНК-нанотехнологий уже давно и интенсивно развивается. Однако РНК-нанотехнологии, которым всего 10 лет, не менее перспективны и могут с успехом применяться в лечении рака, а также вирусных и генетических заболеваний. Медленный прогресс РНК-нанотехнологий объясняется химической нестабильностью РНК и ее разрушением в присутствии ферментов.

Профессору Го и его коллегам удалось получить высокостабильную РНК-наночастицу.

«Фермент РНКаза случайным образом разрезает РНК на мелкие фрагменты, делая это очень эффективно – всего за нескольких минут», – объясняет профессор Го. «Учитывая, что РНКаза присутствует повсюду, получение РНК в лаборатории – чрезвычайно сложная задача».

2_64.jpg Наноразмерные моторы, такие как этот –
из ДНК-вала и шести РНК-винтов –
могут обеспечить энергией крошечные
наномашины, каждая из которых в тысячи
раз меньше толщины человеческого волоса.
(Изображение: portal.acs.org)

Заменив одну из химических групп в макромолекуле, Го и его коллеги нашли способ воспрепятствовать действию РНКазы и создать стабильные трехмерные конфигурации РНК, значительно расширив возможности ее применения в нанотехнологиях.

Ученые сосредоточили свое внимание на кольцах рибозы, которые вместе с фосфатными группами составляют остов нуклеополимера. Заменив один из участков рибозного кольца, Го и его коллеги сделали невозможным его связывание с РНКазой, получив, таким образом, устойчивую к разрушению молекулярную структуру.

«Взаимодействие между РНКазой и РНК требует соответствия структурной конформации»,  – объясняет Го. «Если конформация РНК изменяется, РНКаза не может распознать РНК и связывание становится проблематичным».

Показав в более ранних исследованиях, что такое изменение делает РНК стабильной в двойной спирали, ученые отказались от изучения его потенциала в воздействии на фолдинг РНК в трехмерную структуру, необходимую в нанотехнологии.

«Мы установили, что модифицированная РНК может соответствующим образом сворачиваться в 3-D структуру и выполнять свои биологические функции», – говорит Го.

Ученые протестировали способность трехмерной РНК-наноструктуры обеспечивать энергией наноразмерный биологический мотор одного из бактериофагов – вирусов, инфицирующих бактерии – работающий с помощью молекул РНК. Модифицированная РНК показала отличную биологическую активность даже в присутствии высоких концентраций ферментов, обычно разрушающих этот полимер.

4.gif Как ДНК, так и РНК могут служить строительными блоками для постоянно растущего производства наноструктур. Новаторский подход, предложенный Нэдом Симэном 30 лет назад, привел к взрыву информации в области ДНК-нанотехнологии. Молекулами РНК можно манипулировать с той же простотой, что и ДНК, получая при этом неканоническое спаривание оснований, универсальные функции и каталитическую активность, аналогичную белковой. Однако, испугавшись чувствительности РНК к РНКазе, многие ученые ушли из РНК-нанотехнологий. Мы сообщаем о получении стабильных РНК-наночастиц, устойчивых к разложению РНКазой. 2′-F (2′-фтор)-РНК сохраняет способность к правильной димеризации и биологическую активность в приведении в движение наномотора бактериофага phi29 при упаковке вирусной ДНК и образовании инфекционных вирусных частиц. Наши результаты демонстрируют целесообразность производства устойчивых к РНКазе, биологически активных и стабильных РНК-наночастиц для применения в нанотехнологии.
(Аннотация к статье в ACS Nano). (Фото: pubs.acs.org)

Полученные данные подтверждают целесообразность производства устойчивых к ферменту РНКазе, биологически активных и стабильных РНК для использования в области нанотехнологий.

«Так как стабильные молекулы РНК могут быть использованы для сборки различных наноструктур, они являются идеальным инструментом для доставки адресных терапевтических средств в раковые или инфицированные вирусами клетки»,– считает профессор Го.

Исследование финансировалось национальным институтом здравоохранения (National Institutes of Health) США.

Аннотация к статье Fabrication of Stable and RNase-Resistant RNA Nanoparticles Active in Gearing the Nanomotors for Viral DNA Packaging

Пожалуйста, оцените статью:
Ваша оценка: None Средняя: 4.8 (9 votes)
Источник(и):

http://portal.acs.org/…corg/content?…

http://healthnews.uc.edu/news/?…