Нанометровое покрытие из оксида алюминия удваивает скорость переноса тепла
Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.
Какое-то время продолжим трудится на общее благо по адресу
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.
Спасибо, ждём вас на N-N-N.ru
Покрыв невероятно тонким слоем оксида алюминия металлическую поверхность, исследователи из Технологического института штата Джорджия (США) удвоили скорость передачи тепла от нагретой твёрдой поверхности (например, кастрюли на плите) к жидкости (в этой кастрюле).
Нагревание до кипения воды в ёмкости — что может быть банальнее? Но, как ни удивительно, это очень эффективный метод теплопередачи. В этом случае трансфер можно описать как «непрерывный поток тепла». Однако существует критическая точка, после которой твёрдая поверхность становится слишком горячей, и эффективность кипячения теряется.
Но ведь не о кипячении же воды мы собрались рассуждать? Нет. Хотя и об этом тоже.
Рис. 1. Неэффективный процесс теплового трансфера: слишком много слишком больших пузырьков в кипящей воде.
Как говорят сами инженеры,
возможность отсрочить момент достижения критической температуры могла бы сыграть важную роль в развитии новых подходов к управлению температурными параметрами электронных компонентов, а также позволила бы увеличить эффективность множества существующих энергосистем, нуждающихся в этом уже сегодня.
Итак, при кипении пузырьки отводят большое количество тепла от твёрдых поверхностей. Но пузырьки также неплохо справляются с ролью изоляторов, не позволяющих жидкости производить повторное увлажнение поверхности, тем самым прерывая тепловой трансфер. Покрытие из оксида алюминия толщиной всего в несколько сотен атомов (1/1 000 толщины человеческого волоса) имеет высокое сродство к воде и, как результат, облегчает повторное смачивание твёрдой поверхности.
Для получения покрытия из оксида алюминия использовался метод атомно-слоевой эпитаксии, позволивший учёным очень точно контролировать толщину формируемого слоя. Благодаря исключительной тонкости дополнительный оксидный слой не увеличивает термическое сопротивление, зато действительно интенсифицирует эффективность процесса переноса тепла в целом.
Результаты исследования опубликованы в журнале Applied Physics Letters.
Что ж, подождём, когда подобные технологии доберутся до реального применения (водяное охлаждение, нагрев воды на тепловых и атомных электростанциях и пр.). Может, хоть тогда не понадобится развешивать повсюду ртутные лампы, потенциально отравляя всё вокруг в судорожных попытках сэкономить на дорогущем электричестве…
- Источник(и):
-
1. PhysOrg
- Войдите на сайт для отправки комментариев