Создан простой и надёжный миниатюрный магнитометр
Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.
Какое-то время продолжим трудится на общее благо по адресу
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.
Спасибо, ждём вас на N-N-N.ru
В Университете Юты (США) испытан небольшой магнитометр оригинальной конструкции.
Для абсолютного измерения параметров магнитного поля чаще всего применяются сверхпроводящие СКВИД-магнитометры или устройства, работа которых основана на явлении магнитного резонанса — избирательного поглощения веществом электромагнитных волн, обусловленного переориентацией магнитных моментов частиц. Первые ориентированы на работу с очень слабыми полями, вторые — на средние и сильные поля.
Основными недостатками традиционных магниторезонансных устройств считаются их высокая стоимость и большие размеры. В попытке устранить эти изъяны предлагались новые варианты конструкции, для регистрации резонансного сигнала в которых используются зависящие от спина процессы переноса заряда или рекомбинации в полупроводниках. Изготовленные по таким схемам магнитометры миниатюрны и приобретают чувствительность к сравнительно слабым полям.
Рис. 1. Схема и фотография магнитометра, на которой хорошо различим красноватый слой органического полимера MEH-PPV (иллюстрации авторов работы).
В основе устройства, созданного американскими специалистами, также лежит полупроводниковая структура с тонким (~200 нм) слоем органического полимера поли[2-метокси-5-(2’-этилгексилокси)-1,4-фенилен-винилена], обозначаемого как MEH-PPV и давно используемого производителями светодиодов, и двумя прилегающими к нему контактами, инжектирующими электроны и дырки. Магнитометр размещался на стеклянной подложке, которую затем устанавливали на монтажную плату размером 20×30 мм. При этом площадь участка MEH-PPV, непосредственно участвующего в измерениях, не превышала одного квадратного миллиметра.
Во время испытаний на магнитометр воздействовали магнитное поле B0 и радиочастотное излучение, а физики измеряли прямой ток, протекающий через органическую диодную структуру. На приведённых ниже рисунках хорошо видно, что ток возрастает при увеличении индукции магнитного поля (эта ожидаемая зависимость, отметим, связана с магниторезистивным эффектом). Однако резонансное сочетание частоты РЧ-поля, параметры которого контролировались экспериментаторами, и величины B0 приводило к переориентации спинов носителей заряда и уменьшению тока. Регистрируя это снижение и отмечая соответствующую ему резонансную частоту, исследователи получали возможность вычислить магнитную индукцию.
Рис. 2. Сверху показаны изменения тока, регистрируемые в экспериментах с органической диодной структурой при воздействии РЧ-излучения на частоте в 200 (слева) и 50 МГц. Когда условия резонанса выполняются, ток падает. Нижний рисунок даёт понять, что зависимость величины B0, на которой наблюдается максимальное уменьшение тока, от частоты РЧ-поля линейна во всём исследованном диапазоне. (Иллюстрация авторов работы).
Опыты показали, что
устройство не требует калибровки, отлично работает в широком температурном диапазоне (5–300 К) и сохраняет свои характеристики даже в том случае, если диод на целые сутки оставлялся без защиты в окружающей атмосфере. Измеряемые величины B0 варьировались от 1 до 340 мТл, но эти ограничения, по словам изобретателей, нефундаментальны и имеют технический характер.
Верхний предел, скажем, определялся возможностями РЧ-оборудования — отвечающей индукции в 340 мТл резонансной частотой в ≈9,7 ГГц.
Есть у нового магнитометра и недостатки. Наиболее существенный (и первый в очереди на исправление) — невысокая скорость работы (измерение может затянуться на несколько секунд).
Полная версия отчёта опубликована в журнале Nature Communications.
- Источник(и):
- Войдите на сайт для отправки комментариев
Радуют вот такие статьи! Автору спасибо, очень интересно.