Физики впервые успешно запутали разноцветные фотоны

Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.

Какое-то время продолжим трудится на общее благо по адресу https://n-n-n.ru.
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.

Спасибо, ждём вас на N-N-N.ru

Недавно физики из Университета наук и технологий в Китае, команду которых возглавлял профессор Сяо-Хуэй Бао (Xiao-Hui Bao), представили новую методику «стирания» информаций о свойствах частицы и продемонстрировали первую успешную запутанность двух «разноцветных» фотонов (по сути, частиц, отвечающих за свет с разной длиной волны). До сегодняшнего дня это считалось практически невозможным.

Особенность запутанных частиц заключается в том, что

состояние каждой из них невозможно измерить отдельно от другой. Измерение состояния одной мгновенно провоцирует смену состояния частицы-партнёра на противоположное. А поскольку такие частицы могут быть разделены гигантским пространством и временем, никакой сигнал не может быть связывающим звоном между ними. Это и рождает парадокс.

Квантовая запутанность вдохновляет на создание новых информационных технологий, при которых скорость передачи данных была бы абсолютной. Но прежде чем создавать квантовые процессоры и датчики, необходимо научиться генерировать запутанность между большим числом квантовых систем, например, фотонов.

Одним из наиболее эффективных методов запутывания фотонов является использование частиц света из двух разных источников. Два фотона отправляются в светоделитель, где происходит двухфотонная интерференция: если наблюдатель, находящийся за светоделителем, не видит, по какому пути пошёл тот или иной фотон, то для него два вышедших фотона (два разных состояния) будут находиться в состоянии квантовой запутанности.

o_3_3.jpg Рис. 1. Освоение квантовой запутанности «разных цветов» поможет создавать устройства для мгновенной передачи информации (фото Wikimedia Commons).

Для получения идеальной интерференции, участвующие фотоны должны быть неотличимы в тот момент, когда они выходят из системы и их параметры измеряют. При этом, как доказали Бао и его коллеги, при входе в светоделитель фотоны могут быть отличными, например, обладать разным цветом, поляризацией, пространственной модой и так далее. В таком случае интерференция также возможна, нужно только чтобы детектор был нечувствителен ко всем этим свойствам частиц или чтобы эта информация каким-то образом «стиралась» прямо перед измерением.

Достижение китайских физиков фактически заключается в изобретении хорошего способа «стирания» информации о различии частот фотонов. Именно по этой причине две «разноцветных» частицы удалось успешно запутать.

Суть эксперимента заключалась в следующем: два фотона с определённой (одинаковой) поляризацией и разными частотами посылаются в поляризационный светоделитель. В случае если фотоны были бы идентичны, они на выходе были бы спутанными. Но в эксперименте Бао участвовали частицы, которые можно различить по цвету.

Светоделитель в таком случае не будет выводить идеально запутанные частицы, вместо этого они будут находиться в так называемом «гипозапутанном» состоянии, при котором поляризация и цвет неразрывно связаны друг с другом. Если кто-то попытается измерить отдельно либо одну, либо другую характеристику в отдельности, то по оставшемуся свойству частицы перестанут быть запутанными. Хитрость новой методики состоит в том, что «стирая» информацию о цвете, учёные оставляют запутанность частиц в поляризации (и наоборот).

Добиться такого эффекта удалось, проводя постоянные измерения времени в высоком разрешении на выходах из светоделителя, откуда вылетают фотоны. Время тесно связано с частотой, а информация о частоте может быть интерпретирована таким же образом, что и информация о времени. Если учёный усреднит информацию о том, в какой момент два фотона выйдут из светоделителя, то и информация об их частоте окажется усреднённой, и детектор окажется «обманут». На картинке ниже создаются две пары (А-а и B-b) поляризационно запутанных фотонов «разных цветов» (частоты каждой отличаются на 40 или 80 МГц). После входа фотонов a и b в светоделитель появляется гипозапутанность по частоте и поляризованности. Затем детекторами фотонов стирается информация о частоте. Время выхода t1 и t2 используется для модификации фазы A и передачи поляризационной запутанности паре A и B с высокой точностью.

o_2_4.jpg Рис. 2. Время выхода t1 и t2 используется для передачи поляризационной запутанности паре A и B (иллюстрация University of Science and Technology of China).

Статья с описанием эксперимента вышла в журнале Physical Review Letters.

Своим исследованием китайские учёные решают проблему квантовых сетей будущего: результаты работы являются разрешением проблемы частотной расстройки, возникающей при взаимосвязи разнородных квантовых систем в квантовых сетях.

Бао также отмечает в пресс-релизе, что

его разработка может иметь применение в слепых квантовых вычислениях, при которых ввод, вычисление и вывод информации должны оставаться неизвестными компьютеру. При таких обстоятельствах также часто возникает проблема частотной расстройки.

И наконец, наиболее очевидное применение технологии в квантовых телекоммуникациях будущего заключается в создании связей между различными каналами в WDM.

Пожалуйста, оцените статью:
Ваша оценка: None Средняя: 5 (6 votes)
Источник(и):

1. vesti.ru