Новые гибридные идеи для двумерной электроники
Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.
Какое-то время продолжим трудится на общее благо по адресу
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.
Спасибо, ждём вас на N-N-N.ru
Группа ученых из США представила новую CMOS-совместимую технологию для интеграции различных двумерных материалов в одно электронное устройство. Используя представленную методику, исследователи построили масштабные электронные схемы на основе гетероструктур из графена и сульфида молибдена, выращенных методом химического осаждения из парообразного состояния, где сульфид молибдена использовался в качестве канала транзистора, а графен исполнял роль контактных электродов.
Надо отметить, что
предложенный процесс может быть распространен на изготовление гетероструктур из любого двумерного слоистого материала. Таким образом, он открывает большие перспективы для прозрачной электроники, производства всевозможных датчиков, туннельных полевых транзисторов и транзисторов с высокой подвижностью носителей заряда.
Двумерные материалы вызывают огромный интерес у ученых со всего мира, поскольку их электронные и механические свойства, существенно отличающиеся от своих трехмерных аналогов. Это означает, что они могут найти применение во множестве новых устройств, к примеру, маломощных электронных схемах, дешевых или гибких дисплеях, сенсорах, а также в гибкой электронике, которая может наноситься на самые разнообразные поверхности.
Наиболее известные двумерные материалы – графен и дихалькогениды переходных металлов.
Первый представляет собой лист углерода толщиной всего в один атом с гексагональной кристаллической решеткой.
Вторые – это так называемые ванн-дер-ваальсовы материалы, которые имеют химическую формулу МХ2, где М – переходной металл (к примеру, молибден), а Х – халькоген (например, сера). При постепенном сокращении объема дихалькогенида переходного металла до монослоя он превращается из полупроводника с непрямой запрещенной зоной в полупроводник с прямой запрещенной зоной. Кроме того, подобные монослои эффективно поглощают и излучают свет, что может быть использовано в различных оптоэлектронных устройствах, к примеру, светоизлучающих диодах и солнечных батареях.
Благодаря новой технологии производства, предложенной группой ученых из Massachusetts Institute of Technology, Harvard University и United States Army Research Laboratory (США), исследователи впервые смогли создавать гетероструктуры, сочетающие в себе графен и дихалькогенид переходного металла. Технология подразумевает избирательное травление двумерных структур.
Свои эксперименты ученые начали с формирования больших по площади листов сульфида молибдена и графена при помощи химического осаждения из парообразного состояния. После этого с помощью травления формировался изолированный канал из сульфида молибдена.
Далее с помощью низкотемпературного молекулярного наслаивания и методов литографии структура частично покрывалась оксидом алюминия, выполняющего роль диэлектрика. После чего на образец переносились листы графена большой площади, которые обрезались по форме необходимых электродов при помощи кислородной плазмы (сульфид молибдена при этом оставался защищенным при помощи оксида алюминия).
Предложенный таким образом процесс изготовления устройств может быть перенесен на другие гетероструктуры из любых двумерных материалов. Иными словами, техника может найти применение в таких устройствах, как лазеры, туннельные полевые транзисторы и транзисторы с высокой подвижностью носителей заряда. Поскольку каждый компонент в такой схеме имеет очень малую толщину, готовое устройство получается гибким и прозрачным, т.е. может найти применение в носимой электронике и датчиках, размещенных на любом типе поверхности.
В настоящее время команда занята интеграцией в структуру двумерного гексагонального нитрида бора. Кроме того, в планах попытка создания бесшовного соединения сульфида молибдена и графена.
Подробные результаты работы опубликованы в журнале Nano Letters.
- Источник(и):
-
1. sci-lib.com
- Войдите на сайт для отправки комментариев