Ученым, "закрутив" радиоволны, удалось получить скорость беспроводной передачи данных в 32 гигабита в секунду

Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.

Какое-то время продолжим трудится на общее благо по адресу https://n-n-n.ru.
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.

Спасибо, ждём вас на N-N-N.ru

Группе ученых из университета Южной Калифорнии (University of Southern California, USC), которая два года назад осуществила передачу данных со скоростью 2.56 терабита в секунду при помощи метода «закручивания» лучей света лазера, удалось реализовать подобную технологию и в отношении радиоволн. Это, в свою очередь, позволяет получить высокие скорости беспроводной передачи информации, обходя массу недостатков, присущих оптическим коммуникационным системам.

Группа из Школы конструирования Витерби (Viterbi School of Engineering), возглавляемая профессором Аланом Виллнером (Alan Willner), в одной из подземных лабораторий создала экспериментальную коммуникационную систему, использующую «закручивание» радиоволн.

И, проводя эксперименты на этой установке,

ученые получили скорость передачи информации в 32 гигабита в секунду, правда пока еще лишь на небольшом расстоянии между приемником и передатчиком, которое составило 2.5 метра.

Для сравнения, достигнутой скорости передачи информации достаточно для того, чтобы за одну секунду передать десять с половиной часов высококачественного видео в HD-разрешении и это в 30 раз быстрее, чем скорость обмена информацией в современных беспроводных LTE-сетях.

«Нам удалось не только разработать способ создания нескольких независимых радиоканалов, разнесенных в пространстве, но использующих одну и туже несущую частоту. Нам еще удалось создать самую быстродействующую систему передачи информации при помощи радиоволн» – рассказывает профессор Виллнер, – «Преимущество радиоволн перед светом заключается в том, что радиоволны могут распространяться более широкими и расходящимися лучами, огибая некоторые препятствия между передатчиком и приемником. Кроме этого радиоволны меньше подвержены влиянию атмосферных и погодных явлений».

Как можно понять из написанного выше, ученым удалось получить высокую скорость передачи за счет закручивания радиоволн и создания при помощи этого нескольких разнесенных в пространстве независимых каналов передачи данных.

Основой для реализации этого фокуса является специальная пластинчатая фазовая антенна, которая закручивает каждый из входящих в нее нескольких лучей радиоволн, делая из него нечто, похожее на растянутую в одну линию бесконечную молекулу ДНК.

На стороне приемника так же находится подобное фазовое устройство, выполняющее обратное преобразование, разделяющее результирующие лучи радиоволн и подающее их на устройство-детектор.

«Данная технология не очень хорошо подходит для организации обычной беспроводной связи типа Wi-Fi, через которую многие люди получают доступ в Интернет» – рассказывает Энди Молиш (Andy Molisch), специалист в области беспроводных коммуникаций, входящий в группу профессора Виллнера, – «Основной областью применения разработанной технологии закручивания радиоволн мы считаем ультраскоростные коммуникационные беспроводные каналы, соединяющие в единую сеть все станции и базовые станции сетей мобильной связи следующих поколений».

А в ближайшем будущем ученые сосредоточатся на доработке технологии закручивания радиоволн, что позволит расширить ее рабочий диапазон, еще увеличить скорости передачи информации и поднять ее другие характеристики.

Пожалуйста, оцените статью:
Ваша оценка: None Средняя: 4.8 (8 votes)
Источник(и):

1. dailytechinfo.org

2. phys.org