«Звуковые пули» помогут лучше видеть в мутной воде

Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.

Какое-то время продолжим трудится на общее благо по адресу https://n-n-n.ru.
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.

Спасибо, ждём вас на N-N-N.ru

Первая двухмерная акустическая линза позволит куда детальнее анализировать трёхмерные объекты как в глубине морских вод, так и внутри человеческого тела.

В 2009 году Кьяра Дарайо (Chiara Daraio) и Алессандро Спадони (Alessandro Spadoni) из Калифорнийского технологического института (США) продемонстрировали первый в мире образец акустической линзы.

По виду это что-то вроде колыбели Ньютона, где стальные сферы бьют друг по другу и столкновение на одном краю их ряда порождает одиночные волны, скорость и фокальную точку которых можно контролировать настройкой самого прибора.

d1_1.jpg Рис. 1. Красными показаны поверхности, в которых звуковая пуля создаёт положительное давление, а синим — где возникает отрицательное. (Здесь и ниже иллюстрации Spadoni & Daraio / Caltech).

В новой работе г-жа Дарайо и группа исследователей превратили свою одномерную акустическую линзу в двухмерную — из 13 вертикальных цепей по 30 стальных шариков, выстроенных в квадратную решётку.

Эксперименты с устройством показали возможность создания с его помощью «звуковых пуль» в воде, что подводит технологию совсем близко к медицинскому и военно-морскому использованию.

«Двумерные ряды акустических источников (цепей) позволяют нам фокусировать «звуковые пули» в трёхмерном пространстве, создавая более компактный и проще контролируемый акустический сигнал, — поясняют учёные. — Фокусируемое поле давления может быть перемещено или даже просканировано в трёхмерном пространстве. Это весьма желательная вещь, скажем, для акустической диагностики и хирургии. Но куда важнее то, что мы показали возможность создания «звуковых пуль» в воде, то есть то, что было предсказано нами при моделировании, но до сих пор не подтверждалось экспериментально».

Исследователи показали, что,

регулируя взаимное расположение цепей, а тем самым длину волны одиночной звуковой волны, они могут контролировать форму и размеры «звуковой пули». Фокальная точка, в свою очередь, управляется изменением степени преднатяжения тех или иных цепей или же с помощью передачи пусковых сигналов к разным цепям в слегка разные моменты времени, с запозданием друг относительно друга.

d2_2.jpg Рис. 2. Общая схема экспериментальной установки.

Из-за значительно большей интенсивности «звуковых пуль» в сравнении с обычными средствами акустической диагностики и глубинной эхолокации можно ожидать, что построенные на такой основе приборы будут иметь разрешение и проникающую способность, недоступные сегодняшним аналогам, а внедрение новой технологии заметно продвинет вперёд как диагностику внутренних органов, так и поиск подводных лодок и автономных необитаемых подводных аппаратов.

Отчёт об исследовании вскоре будет опубликован в журнале Applied Physics Letters.

Пожалуйста, оцените статью:
Ваша оценка: None Средняя: 4.9 (12 votes)
Источник(и):

1. phys.org

2. compulenta.computerra.ru