Открытие физиков из МФТИ может ускорить компьютеры в 10 раз

Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.

Какое-то время продолжим трудится на общее благо по адресу https://n-n-n.ru.
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.

Спасибо, ждём вас на N-N-N.ru

-->

МОСКВА, 5 авг – РИА Новости. Российские физики научились использовать так называемые поляритоны для передачи информации в миниатюрных кремниевых чипах, что позволит создать первые световые компьютеры в ближайшем будущем, чья скорость будет в десятки раз выше, чем у современных аналогов, говорится в статье, опубликованной в журнале Optics Express.

«Поверхностные плазмон-поляритоны уже предлагались на роль носителей информации при передаче данных, однако проблема состояла в том, что сигнал крайне быстро затухал при распространении по волноводам. Нам удалось решить эту проблему, что открывает дорогу к созданию нового поколения быстродействующих оптоэлектронных чипов», — рассказывает Дмитрий Федянин из Московского физико-технического института в Долгопрудном.

ria-plazmon.jpg© Svintsov et al./Supercomputingonline.com Схема плазмонного световода, созданного физиками из Физтеха

Федянин и его коллеги сделали большой шаг к переходу от обычных электронных гаджетов к их футуристическим световым аналогам, научившись «сжимать» свет при помощи так называемых плазмонных резонаторов и рождающихся на их поверхности необычных частиц – поляритонов.

Поляритоны представляют собой одну из относительно недавно созданных виртуальных частиц, которая, как и фотон, одновременно ведет себя как волна и как частица. Он состоит из трех компонентов — оптического резонатора (набора из двух зеркал-отражателей), заточенной между ними световой волны и квантового колодца – атома и вращающегося вокруг него электрона, который периодически поглощает и испускает квант света.

Поверхностные поляритоны, как объясняет Федянин, позволяют решить ключевую проблему оптоэлектроники – невозможность миниатюризации некоторых ключевых компонентов световых компьютеров.

Дело в том, что их размеры не могут быть меньше 200 нанометров для видимого света и около 500 нанометров для инфракрасного излучения из-за явления дифракции света — огибания волнами света препятствий, имеющих размеры менее половины длины световой волны. Для сравнения, размеры транзисторов и проводников в современных чипах составляют десятки и единицы нанометров.

Обойти дифракционный предел можно, если перейти от фотонов к поверхностным плазмон-поляритонам — коллективным возбуждениям, представляющим собой взаимодействие между фотонами и колебаниями электронов в металле на границе между металлом и диэлектриком. В отличие от объемных световых волн, поверхностные поляритоны являются поверхностными электромагнитными волнами. Это позволяет перейти от привычной трехмерной оптики к двумерной.

"Грубо говоря, фотон в пространстве занимает определенный объем, порядка длины волны света. Мы можем “сжать” его, преобразовав в поверхностный плазмон-поляритон. Соответственно, используя такой подход, удается повысить степень интеграции и снизить размеры оптических элементов. Но у этого замечательного решения, к сожалению, есть обратная сторона. Для того, чтобы существовал поверхностный плазмон-поляритон, нужен металл, точнее электронный газ в нем. А это влечет за собой запредельно высокие Джоулевы потери, подобные тем, что мы имеем, пропуская постоянный ток по металлическим проводам, но только на оптических частотах», — говорит Федянин.

Эти потери энергии приводят к тому, что колебания плазмонов очень быстро затухают без внешней поддержки. Физики из МФТИ разработали такой метод поддержки этих плазмонов при помощи слабых импульсов тока, который позволяет им проходить от одного конца чипа до его противоположной оконечности без потери сигнала.

Секретом этого успеха стало то, что российские ученые вставили тонкий слой диэлектрика между резонаторами из наночастиц золота и полупроводниковой «шиной», через которую шел ток, поддерживающий колебания плазмонов. Подобное техническое решение почти обнулило токи утечки, резко снизило тепловыделение и сделало возможным использование плазмонных поверхностных поляритонов в оптоэлектронике, заключают физики.

Пожалуйста, оцените статью:
Ваша оценка: None Средняя: 3.8 (5 votes)
Источник(и):

ria.ru