Учёные сделали транзистор из одной молекулы и нескольких атомов

Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.

Какое-то время продолжим трудится на общее благо по адресу https://n-n-n.ru.
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.

Спасибо, ждём вас на N-N-N.ru

Портрет нанотранзистора

Немецким физикам совместно с японскими и американскими коллегами удалось, используя сканирующий туннельный микроскоп, создать миниатюрный транзистор, состоящий из одной молекулы и нескольких атомов. Малыш ведёт себя не совсем так, как его макроскопические аналоги, и может послужить важным шагом в создании наноустройств. Также он поможет фундаментальным исследованиям вопросов передачи электронов в молекулярных наноструктурах.

Обычные транзисторы – это элементы радиоэлектронных схем, которые делаются из полупроводникового материала. Транзистор имеет три вывода, и входной сигнал на управляющем контакте позволяет управлять электрическим током, проходящим через два других контакта. В молекулярном транзисторе ток оказывается чувствителен к переходам электронов между энергетическими уровнями.

Предыдущие подходы к созданию нанотранзисторов,– например, при помощи литографии,– не позволяли получать устройства, способные чётко контролировать прохождение отдельных электронов. С помощью сканирующего туннельного микроскопа удалось сделать транзистор из одной органической молекулы и группы положительно заряженных атомов металла.

Вся эта красота расположилась на поверхности кристалла арсенида индия. Поверхность кристалла была подготовлена при помощи молекулярно-пучковой эпитаксии – технологии, при которой испарённое вещество осаждается на подложку в условиях сверхвысокого вакуума.

geektimes-one-molecula-transistor-2.jpgСистема молекулярно-пучковой эпитаксии / Википедия

Молекула не имеет сильных связей с подложкой из кристалла. При подведении острия микроскопа к ней электроны способны перескакивать с подложки на остриё через практически ненарушенные молекулярные орбитали. Как поясняют физики, этот эффект схож с принципом работы квантовой точки – полупроводника микроскопических размеров, электрические характеристики которого зависят от его размера и формы.

Основное отличие от квантовой точки состоит в том, что молекула может вращаться на подложке и принимает различные положения в зависимости от степени заряда. В результате процесс переноса электронов можно контролировать, изменяя положение молекулы.

Пожалуйста, оцените статью:
Ваша оценка: None Средняя: 4.8 (5 votes)
Источник(и):

geektimes.ru