Алмаз помогает охлаждать электронные девайсы
Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.
Какое-то время продолжим трудится на общее благо по адресу
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.
Спасибо, ждём вас на N-N-N.ru
Мощные электронные компоненты очень сильно нагреваются. Поскольку в одном полупроводниковом чипе сочетается множество компонентов, избыточный нагрев является значимой проблемой. Перегревающиеся компоненты электроники зря расходуют энергию и могут вести себя непредсказуемо или ломаться. Поэтому возможность контролировать степень нагрева компонентов является важной задачей. И учеными был найден еще один, на сей раз алмазный способ охлаждения.
Особую важность представляет охлаждение девайсов из нитрида галлия. Йонг Хан (Yong Han) из Института микроэлектроники сингапурского Агентства науки, технологии и исследований (A*STAR) отмечает способность нитрида галлия работать с высоким напряжением, его высокую производительность и пропускную способность.
Но у этих превосходных качеств есть и обратная сторона — в транзисторном чипе из нитрида галлия тепло концентрируется на маленьких площадях, образуя несколько сильно нагретых участков.
Йонг Хан со своими коллегами экспериментально и посредством вычислений показали, что слой алмаза способен равномерно распределять тепло, повышая тем самым термическую производительность девайсов на основе нитрида галлия.
Исследователями был создан чип для термического теста с восемью крошечными точками нагрева, размером 0,45 на 0,3 миллиметра каждая. Затем исследователи покрыли этот чип слоем алмаза, произведенного с использованием технологии, называемой химическим осаждением из газовой фазы.
Алмазный распределитель тепла и тестовый чип были соединены с использованием процесса «склеивания» с применением термического сжатия. Затем был прикреплен микрокулер, девайс, содержащий ряд каналов микрометровой ширины и микродвигатель в толчковом режиме. Вода сталкивается со стенкой, являющейся источником тепла, затем проходит по микроканалам и устраняет избыточное тепло, сохраняя структуру в достаточно прохладном состоянии.
Йонг Хан совместно с коллегами опробовал созданный ими девайс при генерируемой энергии нагрева в диапазоне от 10 до 120 ватт и протестировали чипы толщиной 100 и 200 микрометров. Рассеивая энергию нагрева, распределяющий тепло алмазный слой и микрокулер помогают поддерживать температуру структуры на уровне ниже 160 градусов Цельсия.
Следует отметить, что максимальная температура чипа, охлаждаемого по новой технологии, на 27,3% ниже, чем температура другого девайса, в котором для распределения тепла используется медный слой, и на 40% ниже температуры девайса, в котором распределяющий тепло слой не применяется вообще.
В дальнейшем результаты эксперимента были подтверждены термическим моделированием. Моделирование также показывает, что производительность может быть повышена еще больше с увеличением толщины алмазного слоя. Высокое качество соединения между чипом из нитрида галлия и алмазным распределителем тепла является значимым фактором, позволяющим обеспечить наилучшую производительность.
Йонг Хан надеется, что удастся разработать новый жидкостный микрокулер с более высокими и более постоянными охлаждающими способностями и достигнуть результата в сфере использования алмазного слоя с высокой проводимостью тепла в электронных девайсах.
По материалам sciencedaily.com
- Источник(и):
- Войдите на сайт для отправки комментариев