ИИ справился с задачей сделать себя более компактным

Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.

Какое-то время продолжим трудится на общее благо по адресу https://n-n-n.ru.
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.

Спасибо, ждём вас на N-N-N.ru

-->

Интеллектуальные алгоритмы глубокого обучения, имитирующие работу человеческого мозга с помощью нескольких слоёв искусственных нейронов, как правило, довольно энергоемки и предъявляют серьёзные требования к вычислительным возможностям компьютерного оборудования и к ресурсам памяти.

В канадском Университете Ватерлоо, учёные удачно воспользовались для снижения аппаратных «аппетитов» таких алгоритмов эволюционным принципом, заложенным в самой природе искусственного интеллекта.

Они поместили нейросеть глубокого обучения в виртуальную среду, а затем постепенно уменьшали доступные ей ресурсы процессора и памяти. Машинный интеллект реагировал на эти ограничения адаптируясь и изменяясь — учился функционировать более экономно.

«От поколения к поколению такие сети развивались и становились меньше, стремясь выжить в этих обстоятельствах», — рассказал один из создателей этой технологии, профессор Мохаммед Джавад Шафи (Mohammad Javad Shafiee).

В работе, недавно представленной на международной конференции по компьютерном зрению в Венеции (Италия), канадские инженеры добились 200-кратного уменьшения размеров программного кода глубокого обучения, использовавшегося для задач распознавания.

Это компактное ПО может уместиться во встроенной памяти мобильных компьютерных чипов, используемых в смартфонах и промышленных роботах. Такое интеллектуальное оборудование может работать автономно (например, обеспечивать функционирование виртуального голосового ассистента в смартфоне) почти столь же эффективно, как нейросети, подключенные к Интернету.

Наряду с экономией энергии и трафика такая схема устраняет ряд серьёзных проблем, связанных с переносом в облако приватных или конфиденциальных данных.

Разработчики основали стартап под названием DarwinAI для коммерциализации своего эффективного ПО глубокого обучения.

Пожалуйста, оцените статью:
Ваша оценка: None Средняя: 5 (6 votes)
Источник(и):

ko.com.ua