Липидные нанодиски приспособили для получения водородного топлива

Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.

Какое-то время продолжим трудится на общее благо по адресу https://n-n-n.ru.
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.

Спасибо, ждём вас на N-N-N.ru

Исследователи из США при участии ученых из МФТИ собрали нанобиоконструкцию, которая под действием света производит водород из воды. Специалисты синтезировали нанодиски — круглые кусочки мембраны, состоящие из двойного слоя липидов, — со встроенным светочувствительным белком и соединили их с частицами фотокатализатора оксида титана TiO2. Результаты опубликованы в журнале ACS Nano.

Профессор МФТИ, доктор химических наук и руководитель лаборатории химии и физики липидов Центра исследований молекулярных механизмов старения и возрастных заболеваний МФТИ Владимир Чупин замечает:

«Наши лаборатории, которые занимаются мембранными белками и, в частности, нанодисками, в основном ориентированы на биофизические, медицинские проблемы. Но вот недавняя работа с нашими американскими коллегами показывает, что, если соединить биологические и технические материалы, нанодиски можно использовать и для выделения водородного топлива».

Водородное топливо

Водород — один из лучших альтернативных источников энергии. При его сгорании образуется водяной пар, поэтому он не приносит вреда экологической обстановке. Кроме того, коэффициент полезного действия у водородного топлива (>45%) гораздо выше, чем у бензинового или дизельного (<35%). Крупные автомобильные компании, такие как, например, Toyota, Honda и BMW, уже производят автомобили на водородном топливе, однако в ограниченных масштабах. Производство водорода все еще остается затратным, в том числе и по электроэнергии. Поэтому ученые ищут способ получения водорода при помощи другого энергетического источника.

Берем от природы

Водород можно получить из воды с помощью солнечной энергии. Для этого необходимо присутствие специального вещества — фотокатализатора. Наиболее распространенный фотокатализатор — TiO2. Сам по себе он недостаточно эффективен, поэтому ученые придумывают разные ухищрения: добавляют примеси, измельчают фотокатализатор до наночастиц и т. д. В Аргоннской национальной лаборатории (США) исследователи обратились к биологии и собрали наноконструкцию из TiO2 и белка бактериородопсина. Эти светочувствительные компоненты усиливают действие друг друга и образуют новую систему, функциональность которой намного превосходит набор свойств всех ее частей.

Н+ — протон. АТФ — молекула энергии. АТФ-синтаза производит АТФ с помощью энергии протонов. Серым цветом обозначены липиды.

Бактериородопсин — светочувствительный белок, находящийся в мембране некоторых бактерий. (Вообще, таких белков достаточно много, в данном случае использовался белок бактерии Halobacterium salinarium). Одна часть белка выходит наружу клетки, а другая — внутрь клетки. Под действием солнечного света бактериородопсин начинает качать протоны из клетки в окружающую среду, что обеспечивает производство энергии в бактериальной клетке в виде АТФ. Заметим, что человек в сутки синтезирует около 70 кг АТФ.

Нанодиски

Современные технологии позволяют синтезировать жизнь «в пробирке», без участия живых клеток. Для создания мембранных белков в искусственных условиях используют различные мембрано-моделирующие среды, в частности нанодиски. Нанодиск — это кусочек мембраны, собранный из фосфолипидов и опоясанный двумя молекулами специального белка. Размер диска зависит от длины этих белковых ремней. Мембранный белок, каковым является бактериородопсин, будет «чувствовать» себя в нанодиске как дома, в родной мембране, и сохранять свою естественную структуру. Эти чудо-конструкции используются для изучения структуры мембранных белков, для разработки лекарственных форм, а теперь их приспособили для фотокатализа. С помощью экспертов из МФТИ исследователи получили нанодиски диаметром 10 нанометров со встроенным бактериородопсином.

Получился водород

Нанодиски замешивали в водном растворе вместе с частицами TiO2 с платиновыми вкраплениями для большего эффекта (для фотокатализа). За одну ночь они сами прикрепились друг к другу. В данном случае бактериородопсин выполнял несколько функций. Во-первых, он был антенной, которая собирает свет и передает энергию TiO2, усиливая его фоточувствительность. Во-вторых, он переносил протоны, которые восстанавливались до водорода посредством платинового катализатора. Так как на восстановление затрачиваются электроны, ученые добавили в воду немного метилового спирта в качестве источника электронов. Смесь сначала поместили под зеленый свет, а потом — под белый. Во втором случае водорода получилось примерно в 74 раза больше. В среднем почти постоянное выделение водорода наблюдалось по меньшей мере 2–3 часа.

Раньше уже проводились опыты с подобной конструкцией, но там использовали натуральный бактериородопсин в натуральной мембране. Нанодиски попробовали впервые, и оказалось, что при их применении водорода выделяется столько же или даже больше, но при этом на такое же количество частиц TiO2 требуется меньше бактериородопсина. Исследователи предположили, что это связано с тем, что нанодиски строго одинаковые по размеру и компактные, и это позволяет им образовать больше связок. Хотя сейчас дешевле использовать натуральный бактериородопсин, возможно, развивающиеся методы синтеза жизни «в пробирке» вскоре сделают применение нанодисков более целесообразным.

Пожалуйста, оцените статью:
Пока нет голосов
Источник(и):

naked-science.ru