Характер «короля пластмасс» связали с тактичностью и происхождением
Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.
Какое-то время продолжим трудится на общее благо по адресу
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.
Спасибо, ждём вас на N-N-N.ru
Коллектив ученых, в том числе из Института синтетических полимерных материалов РАН и МФТИ, выяснил, как «правильность» молекул полипропилена и способ обработки влияют на механические свойства конечного изделия. С помощью этих знаний можно на стадии синтеза задавать материалу нужные свойства: от эластичности до твердости. Работа опубликована в журнале Polymer.
Помягче или пожестче?
Полипропилен иногда называют «королем пластмасс», потому что он используется повсеместно. По объемам производства среди полимеров его обгоняет только полиэтилен. Из полипропилена можно получать материалы с широким спектром свойств: от эластичных резинок до высокопрочного пластика, — немного меняя структуру молекул. Однако взаимосвязь между химическим строением и механическими свойствами по-прежнему до конца не установлена.
Три варианта тактичности: изотактичность, синдиотактичность и атактичность
Полимерные материалы способны к метаморфозам благодаря их строению. Полимеры — это длинные молекулярные цепочки, причем цепочки могут быть разной длины. Если материал представляет собой аморфную кашу из молекул, то он будет очень мягким. Но части цепочек могут сцепляться и образовывать так называемые кристаллиты. Кристаллиты — это участки, где атомы строго упорядочены, как в кристаллах. Кристаллиты служат узлами, скрепляющими цепочки, и чем их больше, тем прочнее сетка из цепочек и тем жестче материал. Чтобы цепочки связывались, у структуры молекул должна быть определенная особенность.
Как тактично
Химическая формула полипропилена — цепочка, звеньями которой служит пропилен (пропен). А пространственная структура молекулы определяется тем, как звенья расположены по отношению друг к другу. Если их «хвостики» CH3 смотрят в одну сторону, это называется «изотактичностью», если по очереди смотрят то в одну, то в другую — «синдиотактичностью», а если никакой закономерности нет, говорят об «атактичности». Изотактические участки хорошо скрепляются друг с другом, поэтому чем их больше, то есть чем выше изотактичность полипропилена, тем прочнее должен быть материал. Химики-синтетики могут получать полипропилен с определенной степенью изотактичности. Как именно связаны между собой изотактичность и механические свойства материала — вопрос, который поставили перед собой авторы исследования.
Пентада полимера
Установленный закон
Степень изотактичности полимеров измеряется процентным содержанием пентад. Пентада — это изотактический участок молекулы, состоящий из пяти звеньев. Ученые изучали полипропилен с разной степенью изотактичности: 25, 29, 50, 72, 78, 82 и > 95%. Из этого полипропилена получали образцы в виде тонких пленок толщиной 0,5–0,7 мм двумя способами: в одном случае расплавленный материал закаляли холодной водой, а в другом — медленно остужали со скоростью 3 градуса в минуту. Полипропиленовые пленки растягивали со скоростью 10 мм/мин с помощью специальной тестовой машины. На основе механических тестов для каждого образца построили кривую деформации. Поведение образцов при деформации зависело от их изотактичности и предыстории. Эту закономерность ученые отобразили с помощью зависимости модуля упругости от степени кристалличности. Чем выше модуль упругости, тем неподатливее материал. Степень кристалличности — это содержание кристаллитов в материале по отношению к аморфной части. Кроме этого, ученые показали, что у закаленных и медленно охлажденных образцов кристаллиты находятся в разной форме.
График зависимости модуля упругости Е от степени кристалличности. Буквами Q и S обозначены закаленные и медленно охлажденные образцы соответственно, M и ZN — разные виды катализаторов, а числа — степени изотактичности образцов
«Многие пытаются улучшать свойства полипропилена, потому что отдача очень большая: его выпускают миллионами тонн. Можно чуть-чуть изменить структуру цепи или начальные условия и получить материал с необходимыми свойствами. Во время синтеза можно задать структуру молекулы, но, оказывается, что задавая структуру молекулы, вы задаете свойства сетки, а задавая свойства сетки, вы задаете свойства материала. Это самый главный вывод, который мы делаем в статье. Сейчас мы проделываем подобную работу над не менее популярным полимером — полиэтиленом», — комментирует автор статьи, преподаватель МФТИ и ведущий научный сотрудник лаборатории функциональных полимерных структур ИСПМ РАН Максим Щербина.
- Источник(и):
- Войдите на сайт для отправки комментариев