Российские ученые заставили наноантенны излучать фотоны
Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.
Какое-то время продолжим трудится на общее благо по адресу
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.
Спасибо, ждём вас на N-N-N.ru
Физики из ИТМО заставили перовскитные наноантенны излучать в диапазоне от 530 до 770 нанометров. Такие наноантенны сравнительно легки и дешевы в производстве, а длину волны их излучения можно изменять, контролируя химический состав. Статья опубликована в Nano Letters.
Нанофотоника изучает такие источники фотонов, размеры которых сравнимы с длиной излучаемой волны (длина волны видимого света меняется от 450 до 700 нанометров). Чаще всего ученые используют в качестве таких излучателей отдельные молекулы, квантовые точки или наночастицы с активными дефектами. Однако такие источники не очень эффективны, поскольку излучают ненаправленно, то есть во все стороны. Чтобы исправить это, необходимо использовать наноантенны, которые усилят и перенаправят излучение в нужную сторону. На данный момент ученые разработали несколько различных типов наноантенн, например, плазмонные или диэлектрические антенны.
С другой стороны, если заставить излучать сами наноантенны, дополнительно усиливать и фокусировать излучение не придется. Проблема заключается в том, что совместить источник излучения и резонатор в одном и том же месте не так-то просто. Тем не менее, некоторые диэлектрики, например, арсенид или нитрид галлия (GaAs и GaN), могут излучать свет благодаря прямым переходам электронов между различными зонами, и одновременно с этим обладают достаточно большим коэффициентом преломления, чтобы испытывать резонанс Ми и усиливать излучение в видимом диапазоне. Резонанс Ми — это увеличение интенсивности рассеянного на сферической частице излучения для определенных длин волн, сравнимых с размерами частицы. К сожалению, изготавливать такие неорганические наноантенны слишком дорого, и это ограничивает их практическое применение.
Группа физиков под руководством Сергея Макарова и Юрия Кившара описала и изготовила гибридные (organic−inorganic) перовскитные наночастицы, которые могут излучать при комнатной температуре благодаря переходам между различными экситонными состояниями. В то же время, в таких частицах возникает электрический и магнитный резонансы Ми, что позволяет им усиливать излучение. Предложенные гибридные наночастицы принадлежат семейству MAPbX3, где MA — это метиламмоний CH3NH3, а X — это анион иода I, брома Br или хлора Cl. Изготавливать такие частицы сравнительно просто и дешево, а цвет излучения можно контролировать, заменяя анионы, входящие в состав наночастиц.
Исследуемые наночастицы ученые изготовили с помощью лазерной печати. Для этого они поместили на небольшом расстоянии от кремниевой подложки перовскитную пленку, полученную осаждением раствора иодида метиламмония MAI, иодида свинца PbI2 и вспомогательного вещества (мокрая химия), а затем облучили ее вспышками фемтосекундного иттербиевого (Yb3+) лазера. В результате на подложке образовались наночастицы MAPbI3 размером от 50 до 500 нанометров, форма частиц была близка к сферической.
Затем физики исследовали оптические свойства изготовленных наночастиц, облучая их линейно поляризованным светом галогеновой лампы и наблюдая, как они рассеивают падающий свет. В результате ученым удалось разглядеть магнитнодипольный и магнитоквадрупольный резонансы Ми, которые в сумме давали резкий рост интенсивности рассеянного света для длин волн порядка тысячи нанометров. Как и ожидалось, резонансные частоты уменьшались при увеличении диаметра частиц, причем экспериментальная зависимость в целом совпадала с теоретическими предсказаниями (смотри рисунок).
Зависимость интенсивности рассеянного излучения от длины волны для частицы диаметром около 415 нанометров слева); распределение интенсивности электромагнитного излучения для различных резонансов Ми (справа). E. Y. Tiguntseva et al. / Nano Letters
Рассчитанная зависимость интенсивности рассеянного излучения от диаметра наночастицы и длины волны (слева); сравнение экспериментальных данных и теоретической зависимости (справа). E. Y. Tiguntseva et al. / Nano Letters
После этого ученые заставили наноантенны излучать, возбуждая их лазером. Оказалось, что когда длина волны экситонной линии излучения совпадает с магнитоквадрупольным резонансом частицы, излучение существенно усиливается — примерно в пять раз по сравнению с более мелкими частицами и почти в два раза по сравнению с перовскитной пленкой.
Теоретически рассчитанный спектр излучения (слева); сравнение эксперимента и теории для длины волны излучения λ = 770 нанометров. E. Y. Tiguntseva et al. / Nano Letters
Наконец, исследователи изучили, как резонансная частота наночастиц зависит от их химического состава. Для этого они тем же самым способом изготовили и исследовали наночастицы MAPbBr3 и MaPbBr1,5I1,5. Оказалось, что при увеличении концентрации брома резонансы все больше и больше сдвигаются в сторону коротковолнового излучения. Проще говоря, чем больше брома в наночастице, тем «синее» излучаемый ей свет. По словам ученых, это связано с уменьшением энергетического зазора, который связан с коэффициентом преломления материала наночастиц (закон Мосса).
Зависимость от длины волны интенсивности рассеянного (синяя линия) или испущенного (красная область) излучения для наночастиц MAPbBr3. E. Y. Tiguntseva et al. / Nano Letters
Зависимость от длины волны интенсивности рассеянного (синяя линия) или испущенного (красная область) излучения для наночастиц MAPbBr1,5I1,5. E. Y. Tiguntseva et al. / Nano Letters
Зависимость от длины волны интенсивности рассеянного (синяя линия) или испущенного (красная область) излучения для наночастиц MAPbI3. E. Y. Tiguntseva et al. / Nano Letters
В прошлом году ученые из Австралийского национального университета создали наноантенны, которые преобразуют инфракрасный свет в видимый. В посвященной разработке статье исследователи отмечают, что соединить антенны и прозрачный материал было непросто. Примечательно, что в число соавторов статьи входит Юрий Кившар, руководитель нового исследования физиков из ИТМО.
Автор: Дмитрий Трунин
- Источник(и):
- Войдите на сайт для отправки комментариев