Ученые добились рекордной точности оптического микроскопа

Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.

Какое-то время продолжим трудится на общее благо по адресу https://n-n-n.ru.
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.

Спасибо, ждём вас на N-N-N.ru

Ученые доказали, что оптический микроскоп может добиться рекордной точности в четыре нанометра. На данный момент самый мощный в мире микроскоп работает с разрешением лишь в сотни нанометров. Результаты работы опубликованы в журнале ACS Photonics

Метод ученых основан на использовании микромеханических зондов — кантилеверов — для атомно-силовой микроскопии. Зонд — игла на конце кантилевера с радиусом пять-восемь нанометров (для сравнения, ширина двойной спирали ДНК составляет порядка 2,2–2,4 нанометра) — подводится близко к образцу, и он подтягивается или отталкивается от зонда. В результате взаимодействия изменяется амплитуда колебаний кантилевера. В таких условиях микроскоп может сканировать и показывать трехмерную картину поверхности образца.

b7b0a448c2678a965d50879c7f6161c1ac999a0b.jpg

Кроме формы этой поверхности нужно измерить и ее оптические свойства. Для этого команда Родригеса использует лазерное излучение. Если материал его поглощает, то тот начинает нагреваться и термически расширяться. Поскольку такое расширение невелико, для его измерения необходим чувствительный метод атомно-силовой микроскопии, который позволяет увидеть даже изменение высоты в один атом. Зонды для исследования изготавливаются из золота из-за оптических свойств этого металла, благодаря которым на кончике зонда свет лазера дополнительно усиливается, и игла нагревается быстро и эффективно.

65cb997d78704c6bfd3a2eeecb8fd4ff4249b9cc.png

«Чтобы это технически реализовать, мы используем несколько дополнительных «трюков». Например, лазер модулируется на резонансной частоте зонда. Это значит, что свет включается и выключается с такой же частотой, с которой осциллирует (качается) зонд. Тогда наш материал начинает пульсировать на частоте лазера, зонд усиливает пульсацию объекта за счет резонансных эффектов, и она становится достаточно большой для того, чтобы ее измерить», — рассказывает руководитель работы, сотрудник Томского политехнического университета и Технологического университета Хемница Рауль Родригес.

«На сегодняшний день мы показали возможности разрешения, и теперь нам нужно исследовать эффекты оптического поглощения и теплопроводности, — дополняет коллегу другой автор исследования — Евгения Шеремет из ТПУ.

Пожалуйста, оцените статью:
Ваша оценка: None Средняя: 3 (1 vote)
Источник(и):

indicator.ru