Ученые превратили наноалмазы в управляемые источники света

Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.

Какое-то время продолжим трудится на общее благо по адресу https://n-n-n.ru.
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.

Спасибо, ждём вас на N-N-N.ru

Исследовательская группа из Санкт-Петербургского национального исследовательского университета информационных технологий, механики и оптики (ИТМО) разработала первый в своем роде управляемый источник света, основой которого является наноразмерный кристалл алмаза. Проведенные эксперименты показали, что наличие кристаллика алмаза практически удваивает интенсивность излучаемого таким источником света и позволяет управлять им без необходимости использования дополнительных наностурктур. Ключом ко всему этому являются искусственно созданные дефекты в кристаллической структуре алмаза, а данная технология может быть использована при создании будущих квантовых компьютеров и коммуникационных оптических сетей.

Исследования в области современной нанофотоники условно разделены на два направления – на создание активных диэлектрических наноантенн и на создание управляемых источников фотонов. В качестве основы наноантенн обычно используются металлические частицы на поверхности которых активно возникают плазмоны. Однако, высокий уровень оптических потерь и нагрев металлов во время работы вынуждают ученых искать альтернативные варианты. Поэтому ученые из ИТМО уже некоторое время активно исследуют возможность использования в нанофотонике диэлектрических материалов, ранее они уже успешно создали наноантенны из кремния и перовскитов.

Наноалмазы, за счет их крошечных размеров, обладают некоторыми удивительными свойствами. Алмаз сам по себе имеет очень высокий коэффициент преломления света, высокую удельную теплопроводность и малую химическую активность. А если в алмазе искусственно создать дефекты, называемые азотными вакансиями, то такой кристалл обретает дополнительные свойства. Азотная вакансия (Nitrogen-Vacancy, NV) возникает в месте, где один атом углерода заменяется на атом азота. Направлением вращения оставшимся свободным электрона легко управлять при помощи света и, благодаря этому, вакансию можно использовать в качестве квантового бита, кубита, способного хранить квантовую информацию.

Ученые из ИТМО определили, что уровень излучаемого наноалмазом света может быть увеличен путем совмещения спектра люминесценции NV-центра с частотой оптического резонанса самого нанокристалла. Это может быть достигнуто путем размещения вакансии в строго определенном месте и придания самому кристаллу особой формы.

«Обычно для усиления потока излучаемого света используется сложная система оптических резонаторов» – пишут исследователи, – «Нам же удалось получить подобный эффект без использования каких-либо дополнительных элементов. При этом, нам удалось практически удвоить скорость управления работой источника света, используя только обычные законы физики».

Ученые проводили свои эксперименты с кристаллами, в которых имелось по нескольку азотных вакансий. Но проведенные ими же теоретические расчеты показали, что кристалл, в котором будет присутствовать только одна азотная вакансия, будет работать как высокоэффективный и управляемый источник единичных фотонов, который может стать активным элементом фотонных логических элементов и других устройств.

Пожалуйста, оцените статью:
Ваша оценка: None Средняя: 5 (1 vote)
Источник(и):

www.dailytechinfo.org

rdmag.com