Энтропию системы связали со степенью сжатия информации

Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.

Какое-то время продолжим трудится на общее благо по адресу https://n-n-n.ru.
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.

Спасибо, ждём вас на N-N-N.ru

Физики из Университета Тель-Авива разработали метод, с помощью которого можно быстро и точно оценить энтропию системы, не прибегая к дополнительным соображениям. Для этого исследователи отображали систему в одномерную строку, рассчитывали степень, до которой ее можно сжать без потерь, и отображали полученное значение в энтропию.

На пяти модельных примерах, в которых энтропию можно рассчитать точно, погрешность алгоритма не превышала нескольких процентов. Кроме того, ученые показали, что с помощью предложенного алгоритма можно решать задачу фолдинга белков. Статья опубликована в Physical Review Letters.

Чтобы ухватить основные термодинамические свойства системы, достаточно знать две функции — энтропию и энтальпию системы. Грубо говоря, энтропия измеряет упорядоченность элементов системы, а энтальпия — энергию, которая необходима для поддержания ее структуры. Чтобы оценить энтальпию, достаточно знать силу взаимодействия между компонентами системы, поэтому с вычислением этой функции обычно проблем не возникает.

В то же время, для вычисления энтропии необходимо найти вероятности, с которыми реализуются все возможные микросостояния системы (например, различные способы сворачивания белка). С увеличением размера системы сложность этой задачи быстро растет, и для больших систем ее не могут решить даже современные суперкомпьютеры. Чтобы оценить свойства таких систем, ученым приходится идти на ухищрения.

В частности, один из способов оценить энтропию сложной системы основан на использовании некоторых априорных знаний и предположений — например, эмпирических данных, накопленных в экспериментах с похожими системами. Это позволяет «урезать»пространство, которое нужно смоделировать компьютеру. К сожалению, для каждой задачи способ «урезания» разный.

Другие алгоритмы полагаются на методы, которые оценивают распределение работы в ходе вычисления или рассматривают отношения между различными областями фазового пространства. Впрочем, в этих методах также нельзя выделить явного лидера, и во многих случаях эффективность их работы также сильно зависит от поставленной задачи.

Группа исследователей под руководством Рой Бека (Roy Beck) разработала алгоритм, который довольно точно оценивает асимптотическую энтропию произвольной системы, но требует сравнительно мало вычислений.

Подробнее
Пожалуйста, оцените статью:
Ваша оценка: None Средняя: 5 (1 vote)
Источник(и):

N+1