Предложена новая конфигурация наноскопов
Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.
Какое-то время продолжим трудится на общее благо по адресу
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.
Спасибо, ждём вас на N-N-N.ru
Ученые Томского политехнического университете вместе с коллегами предложили использовать в наноскопах — самых мощных из ныне существующих оптических микроскопов — не микролинзы, а специальные дифракционные решетки с золотыми пластинками.
Такое новшество в перспективе поможет ускорить процесс получения изображения с наноскопа, притом что он ничуть не потеряет в «зоркости». Результаты исследования представлены в журнале Annalen der Physik.
В наноскоп можно разглядеть объекты, размер которых составляет 50 нанометров, что в 20 раз превышает возможности обычного оптического микроскопа. С их помощью можно изучать живые вирусы (в том же электронном микроскопе нельзя — поток электронов просто убивает их) и внутренности клеток.
Эта возможность делает наноскопы крайне перспективными устройствами для биологических исследований. Но изображение в них формируется «кусочками» — каждая микросфера фиксирует свой участок объекта в одной точке. Поэтому нужно делать или целую матрицу из большого числа сфер, или последовательно передвигать одну сферу, что занимает определенное время. Ученые из разных стран работают над увеличением разрешения наноскопов и их усовершенствованием.
В качестве решения ученые ТПУ вместе с коллегами предложили использовать прямоугольную мезоразмерную фазовую дифракционную решетку (решетку, у которой период сравним с длиной волны используемого излучения). Это оптический прибор, представляющий собой поверхность с большим числом параллельных микроскопических штрихов, или выступов.
«Обычная дифракционная решетка из диэлектрика в наноскопе дает слабое разрешение. Поэтому мы в каждый из штрихов предлагаем добавить маленькую золотую пластинку. Получается парадокс — металл же не пропускает свет, а разрешение тем не менее увеличивается. Почему? Здесь срабатывают одновременно несколько эффектов. Это эффект аномальной амплитудной аподизации, резонанс Фабри — Перо и резонанс Фано. Вместе они и помогают увеличить разрешение по сравнению с обычной дифракционной решеткой до 0,3 λ. Это примерно такое же разрешение, как у наноскопа со сферическими частицами», — говорит руководитель проекта доктор технических наук, старший научный сотрудник отделения электронной инженерии ТПУ Игорь Минин.
- Источник(и):
- Войдите на сайт для отправки комментариев