Фотоэффект подарил ионам обратный импульс
Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.
Какое-то время продолжим трудится на общее благо по адресу
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.
Спасибо, ждём вас на N-N-N.ru
В процессе ионизации ионы в среднем получают 3/5 от импульса первоначального фотона и за счет этого двигаются в противоположную импульсу фотона сторону. Это удалось выяснить с помощью тщательного измерения импульсов, которые приобрели заряженные ионы гелия и азота после фотоионизации электрона с внутренней K-оболочки.
Результаты для обоих типов атомов совпали с предсказаниями теории в широком диапазоне энергий фотонов: от 300 электронвольт до 40 килоэлектронвольт. Работа опубликована в Physical Review Letters, кратко о результатах сообщает журнал Physics.
Так как классическая теория электромагнитных волн Максвелла не могла объяснить многих особенностей фотоэффекта, его изучение способствовало развитию современной квантовой физики. В частности, для построения теории этого явления Альберт Эйнштейн привлек идею о том, что энергия из электромагнитной волны поглощается только определенными порциями, и назвал поглощаемые частицы фотонами. За открытие законов фотоэффекта Эйнштейн в 1921 году получил Нобелевскую премию по физике.
Фотоионизация — схожий с фотоэффектом процесс, при котором электрон вылетает из атома при поглощении атомом налетающего фотона. Такой электрон называется фотоэлектроном, а атом после этого становится заряженным ионом.
Теория фотоионизации отдельных атомов активно развивалась в 1920-е годы усилиями Пьера-Виктора Оже (Pierre Victor Auger) и Жана-Батиста Перрена (Jean Baptiste Perrin): в 1927 году они опубликовали работу о распределении импульсов фотоэлектронов. В частности, там они отметили, что фотоэлектроны вылетают преимущественно в направлении начального движения фотона, и что их импульс «…более чем на 50 процентов превышает импульс фотона» — оставив, впрочем, это явление без объяснения. О похожем явлении сообщали и другие авторы, отмечая, что для выполнения закона сохранения импульса ион, в который превращается атом после вылета фотоэлектрона, неизбежно должен двигаться в ту сторону, откуда прилетел фотон.
Согласно квантово-механическому описанию фотоионизации, средний обратный импульс ионов возникает из-за интерференции между дипольным и квадрупольным переходами, которые по отдельности дают симметричное распределение импульса ионов. Это оказывается в некотором противоречии с эффектом давления света в направлении распространения фотонов.
В дальнейшем этот эффект лишь кратко упоминался в контексте влияния давления света на внутризвездные процессы, и лишь в 2014 году группа теоретиков из Университета Шербрук (Канада) подробно рассчитала импульсы иона и электрона при различных сценариях фотоионизации, в частности показав, что в процессе однофотонной ионизации ион приобретает обратный импульс величиной 3/5 от начального импульса фотона.
Для подтверждения существующей теории ученые из Института ядерной физики Гёте под руководством Райнхарда Дёрнера (Reinhard Dörner) измерили распределение импульсов ионов азота N+ и гелия He+ после ионизации под воздействием синхротронного излучения.
- Источник(и):
- Войдите на сайт для отправки комментариев