Предсказание будущего: нейрокомпьютерная модель распознавания речи

Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.

Какое-то время продолжим трудится на общее благо по адресу https://n-n-n.ru.
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.

Спасибо, ждём вас на N-N-N.ru

Что есть речь человека? Это слова, комбинации которых позволяют выразить ту или иную информацию. Возникает вопрос, откуда мы знаем, когда заканчивается одно слово и начинается другое? Вопрос довольно странный, подумают многие, ведь мы с рождения слышим речь окружающих людей, учимся говорить, писать и читать. Накопленный багаж лингвистических знаний, конечно, играет важную роль, но помимо этого есть и нейронные сети головного мозга, разделяющие поток речи на составляющие слова и/или слоги.

Сегодня мы с вами познакомимся с исследованием, в котором ученые из Женевского университета (Швейцария) создали нейрокомпьютерную модель расшифровки речи за счет предсказания слов и слогов. Какие мозговые процессы стали основой модели, что подразумевается под громким словом «предсказание», и насколько эффективна созданная модель? Ответы на эти вопросы ждут нас в докладе ученых.

Основа исследования

Для нас, людей, человеческая речь вполне понятна и членораздельна (чаще всего). Но для машины это лишь поток акустической информации, сплошной сигнал, который необходимо декодировать прежде, чем понять.

Мозг человека действует примерно так же, просто это происходит крайне быстро и незаметно для нас. Фундаментом этого и многих других мозговых процессов ученые считают те или иные нейронные колебания, а также их комбинации.

В частности распознавание речи связывают с комбинацией тета и гамма колебаний, поскольку она позволяет иерархически координировать кодирование фонем в слогах без предварительного знания их длительности и временного возникновения, т.е. восходящая обработка в реальном времени.

Восходящая обработка (bottom-up) — тип обработки информации, основанный на поступлении данных из среды для формирования восприятия.

Естественное распознавание речи также сильно зависит от контекстных сигналов, которые позволяют предвидеть содержание и временную структуру речевого сигнала. Ранее проведенные исследования показали, что во время восприятия непрерывной речи важную роль играет именно механизм прогнозирования. Этот процесс связывают с бета колебаниями.

Еще одной важной составляющей распознавания речевых сигналов можно назвать предиктивное кодирование, когда мозг постоянно генерирует и обновляет ментальную модель окружающей среды. Эта модель используется для генерации прогнозов сенсорного ввода, которые сравниваются с фактическим сенсорным вводом. Сравнение прогнозированного и фактического сигнала приводит к выявлению ошибок, которые служат для обновления и пересмотра ментальной модели.

Другими словами, мозг всегда учится чему-то новому, постоянно обновляя модель окружающего мира. Этот процесс считается критически важным в обработке речевых сигналов.

Ученые отмечают, что во многих теоретических исследованиях поддерживаются как восходящий, так и нисходящий подходы к обработке речи.

Нисходящая обработка (top-down) — разбор системы на составляющие для получения представления о ее композиционных подсистемах способом обратной инженерии.

Разработанная ранее нейрокомпьютерная модель, включающая соединение реалистичных тета- и гамма- возбуждающих/тормозных сетей, была способна предварительно обрабатывать речь таким образом, чтобы затем ее можно было правильно декодировать.

Другая модель, основанная исключительно на предиктивном кодировании, могла точно распознавать отдельные речевые элементы (такие, как слова или полные предложения, если рассматривать их как один речевой элемент).

Следовательно, обе модели работали, просто в разных направлениях. Одна была сфокусирована на аспекте анализа речи в режиме реального времени, а другая — на распознавании изолированных речевых сегментов (анализ не требуется).

Но что, если объединить основные принципы работы этих кардинально разных моделей в одну? По мнению авторов рассматриваемого нами исследования это позволит улучшить производительность и повысить биологический реализм нейрокомпьютерных моделей обработки речи.

Подробнее
Пожалуйста, оцените статью:
Ваша оценка: None Средняя: 4.5 (2 votes)
Источник(и):

Хабр