Новые высокоэффективные фотокатализаторы для производства наночастиц топливных элементов

Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.

Какое-то время продолжим трудится на общее благо по адресу https://n-n-n.ru.
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.

Спасибо, ждём вас на N-N-N.ru

Диоксид титана TiO2.

Синтез наночастиц для топливных элементов или эффективное преобразование соединений азота в экологичные или высокоэнергетические соединения требует разработки новых, высокоэффективных фотокатализаторов. В частности в качестве таких катализаторов консорциум из китайских, французких и немецких ученых предлагает композиционные материалы на основе полиоксометаллатов (POM) с коллоидным диоксидом титана.

Фотокаталитическая активность полиоксометалатов обычно сходна с полупроводниками, ввиду похожих процессов перехода электрона (переход через запрещенную зону для полупроводника и преход HOMO-LUMO в полиоксометалатах). Известно, что многие полиоксометалаты усиливают фотокаталитическую активность диоксида титана посредством обратимого захвата электрона POMом, что приводит к подавлению рекомбинации заряда. В своей работе ученые предлагают новые соединения на основе кобальт- и никельзамещенных POM, проявляющие фотокаталитическую активность при воздействии солнечного света. Соединение K10 Na12 [{Co 3 (B-β-SiW 9 O 33 (OH))(B-β-SiW 8 O 29 (OH) 2 )} 2] • 49H 2 O было обозначено как 1, K 20 [{B-β-SiW933(OH))(B-β-SiW 8 O 29 (OH) 2 )Co 3 (H2O)} 2 Co(H 2 O) 2] • 47H 2 O как 2, Na 17 [Ni 6-As 3 W 24 O 94 (H 2 O) 2 ] • 54H 2 O как 3, а H3 PW 12 O40 как PW 12 и было использовано для сравнения (рис. 1).

image001h.png Рис. 1

Сначала измерялось спектроэлектрохимическое восстановление соединения 1 с помощью UV-vis-NIR спектрометра. Электролиз с помощью расходуемого электрода при разности потенциалов –160 мВ (относительно стандартного каломельного электрода) привело к поглощению, приблизительно, 2 Фарадей/моль. При изменении разности потенциалов до –330 мВ было поглощено ещё 2 Фарадей/моль (рис. 2). Затем авторы изучили фотовосстановление соединений 1, 2, 3, и PW12 (рис.3), используя 2-пропанол или поливиниловый спирт в качестве донора электронов.

image002h.png Рис. 2

image003h.png Рис. 3

Видно, что фоточувствительность полиоксометаллатов убывает в ряду 1 > 2 > PW12 > 3, что не соответствует последовательности разности потенциалов между POM и стандартным каломельным электродом, которая убывает в ряду (0.030 В, PW12) > (0.120 В, 1 и 2)[(0.545 В, 3). Авторы статьи предполагают, что это несоответствие может быть объяснено другими важными параметрами, например, силой взаимодействия между POM и 2-пропанолом. Более того, размер полиоксометалата и влияние центров кобальта в 1 и 2 способствует увеличению области абсорбции полиоксометалата в видимой части спектра. Таким образом, получается что фотовосстановление в 1 и 2 происходит заметно быстрее, чем в PW12, даже несмотря на меньший потенциал.

Затем авторы статьи провели фотовосстановление композиционных материалов на основе POM и коллоидным диоксидом титана (рис. 4). Отмечается, что фотовосстановление 3 с диоксидом титана (3@TiO2) происходит в 8 раз эффективнее, чем фотовосстановление 3. Этот факт, по мнению авторов, подчеркивает то, что именно композитам POM@TiO2 суждено занять ключевые посты в процессах фотосенсибилизированного переноса заряда.

image004h.png Рис. 4

Наконец, авторы испытали (рис. 5) фотокаталитическую активность полученных композитов на известном красителе Acid orange 7 (AO7). АО7, с одной стороны, является исключительно токсичным, а с другой стороны широко применяется в процессах изготовления бумаги, в текстильной, дубильной и пищевой промышленности, а также при создании косметических материалов. На рис 4 видно, что разложение АО7 без POM происходит крайне медленно (за 8 минут лишь на 16%), в то время как в присутствии 1@TiO2 за 8 минут наблюдается полное разложение АО7. Важно отметить, что такое быстрое разложение АО7 было достигнуто в воде, из которой был удален воздух, в то время как в воде, в которую был «закачан» кислород, результаты заметно скромнее и составляют 82% за 20 минут.

image005h.png Рис. 5

Тем не менее, в данной статье авторы убедительно показали синергизм фотокаталитических свойств полиоксометалатов и диоксида титана. При различных условиях при облучении солнечным светом 1@TiO2 или 2@TiO2 демонстрировали фотокаталитическую активность в 1,6 – 2 раза выше, чем в случае чистых 1 или 2.

Результаты исследований опубликованы в статье:

R. Ngo Biboum, C. P. Nanseu Njiki, G. Zhang, U. Kortz, P. Mialane, A. Dolbecq, I. M. Mbomekalle, L. Nadjo and B. Keita High nuclearity Ni/Co polyoxometalates and colloidal TiO2 assemblies as efficient multielectron photocatalysts under visible or sunlight irradiation. – J. Mater. Chem.– 2011. – V.21. – P. 645–650; DOI: 10.1039/C0JM03180A.

Пожалуйста, оцените статью:
Ваша оценка: None Средняя: 5 (1 vote)
Источник(и):

1. nanometer.ru