Две памяти инженера Бобека (часть 2)
Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.
Какое-то время продолжим трудится на общее благо по адресу
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.
Спасибо, ждём вас на N-N-N.ru
Изобретённый в шестидесятые годы метод магнитной записи информации на пермаллой может снова оказаться актуальным благодаря последним исследованиям IBM (первую часть статьи можно прочитать здесь).
Bubble memory. Укрощение строптивого… магнитного поля
Неудачи с твистор памятью не сломили исследовательский дух Эндрю Бобека. Тем более, что магнитная природа вещества продемонстрировала ему интереснейшее явление, не применить которое в практических целях было бы величайшей оплошностью.
Все началось с череды опытов, которые Бобек проводил со своим любимым пермаллоем в сочетании с ферромагнитными материалами на основе редкоземельных элементов. Бобек, в частности, экспериментировал с гадолиний галлиевым гранатом (Gadolinium Gallium Garnet – GGG), используя его в качестве подложки для тонкого листа пермаллоя. Он выяснил, что в полученном сэндвиче при отсутствии магнитного поля области намагничивания располагаются в виде доменов разнообразной формы. Ничего нового в этом не было. Разбиение магнитного поля ферромагнетиков на макроскопические области (домены), обладающие спонтанной намагниченностью, была предсказана еще в 1907 году французским физиком Пьером Вейссом. Бобек пошел в своих исследованиях дальше и посмотрел, как будут вести себя такие домены в магнитном поле, имеющем перпендикулярное направление областям намагниченности пермаллоя. К его удивлению с увеличением силы магнитного поля домены собирались в компактные области. Бобек назвал их «пузырьками» (bubbles).
Рис. 1. Так под воздействием внешнего магнитного поля формируются в тонком листе пермаллоя пузырьки-домены.
Индукционно воздействуя на пузырьки электрическим током, инженер заставил их двигаться по поверхности листа пермаллоя. Пытливый ум Бобека заметил и другую особенность. Участки пермаллоя особой формы способны были отклонить движение пузырьков в предсказуемом направлении. Экспериментируя с формой таких участков, Бобек нашел оптимальную для управления пузырьками-доменами форму, похожую на шеврон (нарукавный знак военных).
Рис. 2. Поясняющая схема.
Именно тогда и сформировалась идея пузырьковой памяти, в которой носителями логической единицы были домены спонтанной намагниченности в листе пермаллоя – пузырьки. Поскольку Бобек научился двигать пузырьки по поверхности пермаллоя, он придумал остроумное решение по чтению информации в своем новом образце памяти. Если в традиционных магнитных накопителях головки чтения/записи двигались над поверхностью магнитного слоя, отыскивая нужный участок, или, в случае магнитной ленты, последняя механически протягивалась вдоль неподвижных головок, то в новой памяти Бобека вообще не было движущихся компонентов. Неподвижные головки чтения ожидали, пока магнитный пузырек к ним «приедет» самостоятельно, управляемый электрическим полем. Отклонить его в нужном направлении помогала система пермаллоевых «шевронов».
Рис. 3. Схема работы 100637-битного
модуля пузырьковой памяти.
Электрический заряд над особым участком листа пермаллоя, называемым генератором, непрерывно создавал магнитные пузырьки – логические единицы, которые начинали двигаться по основному кольцу. Таким образом формировался непрерывный поток логических единиц. Кодирование информации происходило с помощью аннигилятора пузырьков, который «выбивал» в потоке логических единиц дыры – логические нули. Двигаясь по основному кольцу, поток пузырьков достигал нескольких вторичных колец-хранилищ, в которых часть пузырьков, перемежающихся нулями оставалась на хранение, постоянно циркулируя. Например, на рисунке показана работа модуля пузырьковой памяти, хранящего 100637 бит информации в 157 вторичных кольцах, каждое из которых хранило по 641 пузырьку.
Было предложено и остроумное решение по считыванию информации из уже заполненных колец-хранилищ. «Выгнав» пузырьки из нужного вторичного кольца, контроллер электрической обмотки двигал их по главному кольцу до так называемого дупликатора – системы «шевронов», разделяющих пузырек на два клона. Один из этих клонов по главному кольцу снова возвращался в свое вторичное кольцо-хранилище, а второй двигался к детектору, содержащему обмотки, в которых наводился индукционный ток, передаваемый по адресной шине ЭВМ как логическая единица.
Идея была настолько простой и изящной, что после того как Бобек получил на нее патент, право на использование эффекта пузырьковой памяти приобрели почти все ключевые игроки компьютерных комплектующих того времени и даже исследовательские лаборатории таких солидных контор, как NASA.
Рис. 4. Типовой модуль пузырьковой памяти изнутри.
Экспериментируя с формой «шевронов», качеством сплава пермаллоя и редкоземельной подложкой, они в достаточно быстрые сроки создали собственные модули пузырьковой памяти объемом от шестидесяти килобайт до четырех мегабайт.
Рис. 5. Микрофотография пермалоевых «шевронов» в чипе пузырьковой памяти, разработанным NASA.
К уникальной особенности пузырьковой памяти – полнейшему отсутствию движущихся частей, добавилось еще одно немаловажное свойство – противостояние электромагнитному импульсу или жесткому космическому излучению, которые фатально воздействует на память полупроводниковую. Именно поэтому пузырьковой памятью, в первую очередь заинтересовались военные и разработчики космических аппаратов.
Рис. 6. Схема подключения модуля пузырьковой памяти к шине материнской платы ЭВМ, разработанная компанией Intel.
Рис. 7. Несколько модулей пузырьковой памяти, смонтированные на плате расширения ISA.
Основным недостатком пузырькового детища Бобека было низкая скорость чтения/записи, составлявшая от десяти до пятидесяти миллисекунд. Составить конкуренцию оперативной памяти пузырьки не могли, зато с тогдашними жесткими дисками они серьезно конкурировали. И проиграли только тогда, когда технология производства последних в сочетании с повышением скоростью чтения/записи в них стали оптимальными для массового рынка.
Итак, второе изобретение Бобека тоже стало историей. Или нет?
Racetrack memory. Магнитное будущее компьютерной памяти
Конечно же нет. Способ направленного перемещения магнитных доменов в слое пермалллоя никогда не давал покоя исследователям, старавшимся улучшить потребительские характеристики такого перспективного вида памяти.
И кажется инженерам из лаборатории IBM Research, возглавляемым Стюартом Перкиным это удалось.
Их перспективный вид памяти, которую они красноречиво именуют Racetrack Memory является удивительной комбинанией идей инженера Бобека и современных нанотехнологий.
Как и в случае пузырьковой памяти Бобека, в Racetrack Memory магнитные домены-единицы движутся внутри пермаллоя, но изготовлен он в виде тончайшего нанопроводника. На этот изогнутный подковой проводок подается ток, заставляющий домены мчаться мимо головок чтения записи, расположенных в основании подковы. Меняя магнитную полярность, исследователи заставили двигаться записанную информацию вдоль проводника, обеспечивая невероятную скорость чтения и записи – единицы наносекунд.
Рис. 8. Схема модуля Racetrack Memory.
Модуль Racetrack Memory будет представлять собой массив таких нанопроводников, каждый из которых сможет хранить определенное количество бит информации в виде магнитных пузырьков-доменов.
В настоящее время Racetrack Memory все еще исследовательская разработка, о которой, однако, говорят как о вполне коммерческой перспективе в области систем хранения данных с произвольным доступом.
Вот так открытие инженера Бобека, сделанное им в шестидесятых годах прошлого столетия, обрело новую жизнь в двадцать первом веке. Настоящая наука не терпит вакуума идей.
Автор: Евгений Лебеденко.
- Источник(и):
- Войдите на сайт для отправки комментариев