Новые грани в анодном окислении алюминия

Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.

Какое-то время продолжим трудится на общее благо по адресу https://n-n-n.ru.
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.

Спасибо, ждём вас на N-N-N.ru

Коллектив Гонконгских ученых исследовал рост мембран анодного оксида алюминия на разных кристаллографических гранях алюминия в процессе анодного окисления данного металла. На разных гранях степень упорядочения пористой структуры значительно различалась. Этому было найдено и теоретическое объяснение.

Эксперты предрекают скорое и масштабное практическое применение пористых мембран из оксида алюминия, полученных анодным окислением этого металла. Такие мембраны могут работать фильтрами, носителями для катализаторов, шаблонами для получения наноструктур и еще много чем.

rus1.jpg Рис. 1. Поверхность полученной мембраны невооруженным глазом (слева) и в оптический микроскоп (справа).

На свойства получаемых мембран оказывают значительное влияние напряжение анодирования, температура и состав электролита. Это все широко исследовалось и продолжает исследоваться. При этом ранее не было работ, описывающих влияние размера и кристаллографической ориентации зерен анодируемой фольги, несмотря на то, что этими параметрами несложно управлять. Группа ученых из Гонконга решила частично заполнить своей работой этот пробел.

rus2.jpg Рис. 2: SEM поверхности мембраны. Слева: выращенной на (110)-поверхности алюминия, справа: на (100). Посередине – граница зерен в исходном алюминии.

При помощи термомеханической обработки они добились наличия довольно крупных (размером порядка миллиметров) зерен различной ориентации в пластине алюминия. Ориентация зерен определялась методом EBSD. Для получения пористого оксида алюминия данная пластина подвергалась двухстадийному окислительному анодированию. После его проведения становились явно заметными зерна разной кристаллографической ориентации (Рис. 1). При рассмотрении под электронным микроскопом стало заметно, что на зерне с поверхностью (110) поры практически не упорядочивались, а на поверхности (100) получалась гексагонально упорядоченная система пор (Рис. 2). При рассмотрении скола такой мембраны с помощью просвечивающего электронного микроскопа (Рис. 3) было обнаружено, что поры, выращенные на (110)-поверхности имеют разный диаметр на разной глубине, могут быть наклонными относительно поверхности, могут ветвиться или, наоборот, заканчиваться тупиком. На границе зерен дела обстоят еще хуже. А вот на (100)-зерне поры растут вертикально, не ветвятся, не обрываются и не меняют свой диаметр.

rus3.jpg Рис. 3. TEM скола полученной мембраны. Слева: выращенной на (110)-поверхности алюминия, справа: на (100). Посередине – на границе зерен в исходном алюминии.

Дополнительно исследовался рост пор на зернах прочих ориентаций, как бы промежуточных между (110) и (100). Степень упорядочения пор оценивалась компьютерными методами по данным растровой электронной микроскопии и количественно характеризовалась функцией радиального распределения. Чем ближе положение грани к (110), тем хуже на ней упорядочивались поры, чем ближе к (100), тем лучше. Исследователи связывают это с постепенным увеличением модуля упругости для этого ряда кристаллографических плоскостей. Он повышается незначительно, всего на 5–10%, но этого хватает, чтобы поры, упорядочивающиеся за счет механических напряжений, возникающих при их росте, начинали формировать упаковку, весьма близкую к гексагональной.

rus4.jpg Рис. 4. SEM мембран и степень упорядочения пор в них для случая их получения на промежуточных между (110) и (100) гранях алюминия.

Пожалуйста, оцените статью:
Ваша оценка: None Средняя: 4.7 (7 votes)
Источник(и):

1. nanometer.ru