Россия строит свой суперколлайдер

Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.

Какое-то время продолжим трудится на общее благо по адресу https://n-n-n.ru.
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.

Спасибо, ждём вас на N-N-N.ru

Благодаря Большому адронному коллайдеру задачи современной ядерной физики стали интересны не только узкому кругу профессионалов. Но фундаментальные исследования свойств элементарных частиц ведутся не только за рубежом, в настоящее время в России запланирована масштабная научная программа в области физики высоких энергий, включающая в себя строительство ускорителя коллайдера на встречных пучках тяжелых ионов в подмосковной Дубне.

Проект NICA/MPD (Nuclotron-based Ion Collider fAcility/Multi-Purpose Detector) на территории Объединенного института ядерных исследований (ОИЯИ) станет установкой мирового уровня (megascience). Основной целью проекта будет изучение перехода ядерной материи в кварк-глюонную плазму и смешанной фазы этих состояний, экспериментальное наблюдение свойств которых является одной из самых актуальных задач современной физики высоких энергий и элементарных частиц.

Эволюция Вселенной

Задача, поставленная перед дубненскими экспериментаторами, может дать информацию о первых этапах эволюции Вселенной. Теория возникновения нашей Вселенной вследствие Большого взрыва предполагает, что именно

кварк-глюонная плазма, возникшая и просуществовавшая несколько миллионных долей секунды после взрыва, стала строительным материалом современного мира.

Ранняя Вселенная представляла собой изотропную среду с необычайно высокой плотностью энергии, температурой и давлением. В результате расширения и охлаждения Вселенной произошла цепочка фазовых переходов, аналогичных конденсации жидкости из газа, но применительно к элементарным частицам. Первым в этой цепочке стал переход, когда кварки и глюоны, образующие в составе плазмы некую непрерывную среду и существующие как свободные частицы, начали объединяться в нуклоны (нейтроны и протоны).

collider_1_0c9e8.jpg Рис. 1. Эволюция Вселенной после большого взрыва.

Дальнейшее расширение Вселенной и падение температуры привело к возникновению физических сил и элементарных частиц в их современном виде, вследствие чего произошло объединение протонов и нейтронов – нуклеонсинтез, и образованию легких ядер дейтерия, гелия, и еще нескольких легких изотопов. Следующий фазовый переход привел к тому, что доминирующей силой стала гравитация и появилась возможность возникновения атома водорода, а потом и атомов более тяжелых элементов. Если протоны и нейтроны сложились в ядра примерно за 3 минуты, то на образование атомов ушло порядка 300 тысяч лет. В ходе эксперимента станет возможным повторить этот процесс, но в обратном порядке: от атомов к кваркам и глюонам, и разобраться, какие силы притянули кварки друг к другу.

Кварк-глюонная плазма в современности

В современном мире существование кварк-глюонной плазмы возможно только внутри нейтронных звезд, а кварки и глюоны находятся в связанном состоянии в составе ядерной материи. Для получения плазмы экспериментальным путем в физике высоких энергий используют ускорители релятивистских (движущихся с околосветовыми скоростями) тяжелых ионов. Согласно теоретическим ожиданиям, существует узкая область энергий, от 4 до 11 гигаэлектронвольт на нуклон в системе центра масс, где может происходить процесс деконфаймента, когда силы, удерживающие кварки в составе элементарных частиц, более не действуют, и становится возможным существование кварк-глюонной плазмы. В начале 2000 года в CERN была продемонстрирована возможность получения кварк-глюонной плазмы путем столкновения ионов свинца с золотом. Плотность образовавшейся материи превышала плотность ядерной материи почти в 20 раз.

collider_2_15498.jpg Рис. 2. Каждое соударение пары ионов
порождает тысячи частиц, их траектории
показаны цветными линиями (цвета
отражают энергию).

В рамках проекта NICA планируется изучение не только свойств кварк-глюонной плазмы, но и ее смешанного состояния с ядерной материей. Предполагается, что кварк-глюонная и ядерная материи могут сосуществовать, как сосуществуют жидкость и пар, в состоянии смешанной фазы. Согласно теоретическим расчетам, граница такого состояния представляет собой не тонкую линию, а целую область, получившую название «дубненской поляны», границы которой пока сложно предсказать. Свойства смешанного состояния и непосредственно самого перехода пока не исследованы и очень интересны.

Коллайдер NICA и его конкуренты

Для решения поставленных задач будет построен коллайдер NICA, в котором столкнутся пучки ядер золота, разогнанные навстречу друг другу до энергий 5,5 ГэВ на нуклон. Выбор ядер тяжелых элементов, в частности золота, обусловлен тем, что для возникновения кварк-глюонной плазмы необходима большая барионная плотность при сравнительно низких энергиях столкновения ядер.

Интерес к смешанной фазе существует и у экспериментаторов из Брукхейвена (США), но при сверхвысоких энергиях ускорителя RICH переход просто невозможно заметить. В настоящее время там ведется работа по модернизации ускорителя с целью понижения энергии сталкивающихся ионов и одновременного повышения плотности взаимодействия ядер. Эти моменты учтены при разработке концептуального дизайна будущего ускорительного комплекса в Дубне.

При столкновении ядер золота будет образовываться «сгусток» материи с высокой плотностью и температурой. Плотность вещества в таком «сгустке» по прогнозам будет в 7–10 раз превышать плотность обычной ядерной материи. Затем он будет расширяться и остывать, начнет происходить образование элементарных частиц, которые будет фиксировать многоцелевой детектор MPD. По полученным распределениям можно будет судить о свойствах новых состояний материи, которые возникли на различных этапах соударения ядер.

184117.25265_real.jpg Рис. 3. Достопримечательность Дубны в стиле «Ретро» – синхрофазотрон.

У проекта NICA/MPD есть конкуренты среди ведущих научных центров Германии, Швейцарии и США, так как эксперимент очень актуален, но у ОИЯИ уже имеется богатый опыт строительства крупных ускорительных комплексов. Еще в конце 1950-x на территории института был построен Синхрофазотрон, который мог ускорять пучки протонов до рекордных для того времени энергий, достигнутых на ускорителях, – 10 гигаэлектронвольт. А в 1992 году в здании устаревшего к этому времени Синхрофазотрона на основе технологии сверхпроводящих магнитов был построен новый ускоритель – Нуклотрон, способный ускорять ядра вплоть до ядер железа.

184051.25250_real.jpg Рис. 4. Достопримечательность Дубны сегодняшнего дня – нуклотрон.

В настоящий момент он является базовой установкой ОИЯИ. Создание нового ускорительного комплекса предполагается осуществить поэтапно, уже началась модернизация основных систем Нуклотрона, на базе которого планируется строительство коллайдера.

185015.25402_real.jpg Рис. 5. Схема комплекса NICA/MPD.

Работа ускорителя

Схематично работа ускорительного комплекса будет выглядеть так. Источник тяжелых ионов КРИОН посылает ободранные от электронов ядра в линейный ускоритель, где пучок ядер получает начальное ускорение до энергии 5–6 МэВ на нуклон, и передается в бустер синхротрона, где энергия частиц пучка поднимается до значения, когда уровень потерь на остаточном газе в Нуклотроне становится приемлемым. Бустер аккумулирует несколько сгустков из источника и передает их в Нуклотрон, который в свою очередь аккумулирует сгустки из бустера и разгоняет их до энергий 3,5 ГэВ на нуклон. Источник тяжелых ионов, линейный ускоритель, бустер и Нуклотрон составляют инжекционный комплекс коллайдера. Его задача – доставить частицы непосредственно в кольца коллайдера. Для получения проектных характеристик в каждом кольце должно быть накоплено около 15 миллиардов ионов золота, которые будут разгоняться на встречу друг другу.

184957.25387_real.jpg Рис. 6. Многоцелевой детектор MPD.

Накопление осуществляется за счет многократной инжекции ядер соответствующим комплексом. Время такого накопления может составлять до 1 часа, но после его окончания эксперимент может проводиться бесконечно долго с восполнением потерь ионов и охлаждением пучка. Длина кольца коллайдера составит 251 метр. В двух точках пересечения колец будут установлены детекторы. Один из них – многоцелевой детектор (MPD), задачей которого будет фиксация наличия смешанной фазы и других эффектов, которые удастся обнаружить в этой области энергий. Другой детектор предназначен для спиновой программы исследований.

184937.25383_real.jpg Рис. 7. Технология изготовления прототипа время-проекционной камеры TRD для MPD.

Основной проблемой детектирования продуктов столкновения тяжелых релятивистских ядер является огромное множество рождающихся частиц, не все из которых одинаково «полезны» для решения поставленной физической задачи. Поэтому в MPD будет включено несколько основных систем детектирования, задачей которых будет фиксировать траектории, энергии и время пролета рождающихся частиц. Только совокупность данных сможет дать возможность правильно расшифровать информацию о том, какая частица родилась в результате взаимодействия ядер. Также необходим высокий уровень чувствительности детектора, что требует принципиально новых технологических решений. Проведение эксперимента на встречных пучках, а не на фиксированной мишени, как у главного конкурента NICA/MPD проекта FAIR (Германия), даст возможность фиксировать частицы, вылетающие по всем направлениям из точки соударения пучков. Эксперимент на мишени не сможет дать полного обзора, и в тени могут оказаться искомые события.

Начальная стадия проекта

В настоящее время проект NICA находится на стадии развития. Ведутся работы по модернизации ускорителя Нуклотрона – доведение его параметров до предельно возможных, созданы прототипы детекторов, которые войдут в состав MPD. Идет разработка технических параметров ускорительного комплекса, деталей коллайдера и исследования характеристик детекторов на пучках Нуклотрона. Затем наступит стадия конструкторской разработки, строительство бустера и колец коллайдера. Работы должны завершиться к концу 2012 года. По их окончанию будет проводиться монтаж элементов ускорителя и детектора MPD. При достаточном финансировании завершить строительство ускорительного комплекса NICA/MPD планируется в 2015 году. Общая стоимость проекта составит порядка 200 млн долл., финансирование будет осуществляться за счет бюджета ОИЯИ, который состоит из вклада 23 стран-участниц этого международного исследовательского центра, а также дополнительного государственного финансирования программы физики тяжелых ионов.

Проект будет иметь не только научное, но и практическое значение. Это отличная база для создания и испытания новых технологий, а новые и интересные задачи смогут привлечь молодежь в российскую науку.

Автор: Анна Максимчук, научный сотрудник ОИЯИ, специально для R&D.CNews.ru.

Пожалуйста, оцените статью:
Ваша оценка: None Средняя: 4.6 (24 votes)
Источник(и):

CNews