В Сколково будут создаваться наноразмерные источники одиночных фотонов
Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.
Какое-то время продолжим трудится на общее благо по адресу
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.
Спасибо, ждём вас на N-N-N.ru
Проект создания одного из основных элементов квантовых компьютеров – генератора одиночных фотонов – одобрен консультативным научным советом фонда «Сколково». Такие генераторы ученые из ФИАНа и ИСАНа предлагают создавать на базе гиперболических метаматериалов.
Идея создания гиперболических метаматериалов, которые обычно получают путем чередования диэлектрических и металлических слоев нанометровой толщины (например, слоев Al2O3 и Ag), возникла как развитие идеи физика Виктора Веселаго о материалах с отрицательным показателем преломления (он выдвинул эту идею в 1967 году будучи сотрудником ФИАН).
Для того, чтобы материал обладал отрицательным показателем преломления, его магнитная и диэлектрическая проницаемости должны быть одновременно отрицательны. Такие отсутствующие в природе материалы сейчас называют метаматериалами.
В гиперболических метаматериалах, также отсутствующих в природе, ограничения накладываются только на тензор диэлектрической проницаемости, компоненты которого имеют как положительные, так и отрицательные значения. В таких метаматериалах отсутствует так называемый дифракционный предел, или, другими словами,
распространение света в них возможно со сколь угодно высокими пространственными частотами.
«Если гиперболический метаматериал состоит из элементов с характерными размерами в 10 нанометров, то через него можно без затухания передавать изображение, элементы которого имеют размер порядка 10 нм. В обычных же материалах при распространении света сохраняются лишь детали изображения порядка 1 микрона», – рассказывает руководитель проекта, главный научный сотрудник ФИАН, доктор физико-математических наук Василий Климов.
Рис. 1. (a) – схематическое изображение гиперболического метаматериала, состоящего из нанометровых слоев металла и диэлектрика, (b) – «субволновое» распространение света в гиперболическом метаматериале.
Современные компьютеры работают на частоте порядка 1 ГГц, которой соответствует длина волны приблизительно 30 см, в то время как средний размер элементов процессора сейчас уже меньше 90 нанометров.
Повышение частоты работы компьютеров до оптической позволит в миллионы раз повысить их производительность.
Но для этого необходим переход на новую элементную базу. Один из вариантов развития информационных технологий (оптические и квантовые компьютеры) связан с получением и использованием большого количества (тысяч или даже миллионов) наноразмерных источников света и даже одиночных фотонов.
Цель проекта, который будет осуществляться в Сколково, заключается в создании матрицы из наноразмерных источников света на основе гиперболических метаматериалов.
Рис. 2. Приблизительная схема предлагаемого устройства.
На гиперболический метаматериал, геометрия которого определяется методами трансформационной оптики, с помощью обычных микролинз подается свет. Микронного размера «пучки» от этих линз должны сфокусироваться и пройти, например, через золотую пленку с наноотверстиями.
Как сделать так, чтобы свет сквозь эти отверстия проходил с наибольшей эффективностью – основная задача разработчиков на сегодняшний день.
Для получения максимальной эффективности необходима «линза» из гиперболического метаматериала («гиперлинза»), которая обеспечит максимальное попадание света в отверстия.
С такой гиперлинзой наноразмерный источник света приобретает законченный вид, и может быть использован в схеме оптического компьютера или бионаносенсора.
«В каждом наноотверстии такого бионаносенсора или биочипа может быть расположен специальный биохимический препарат (например, заданная цепочка нуклеотидов), который реагирует только с конкретной составляющей требующего анализа биоматериала (например, с обнаруживаемым дефектным кусочком ДНК). Подсветив каждый элемент биопрепарата отдельным источником света, по изменениям в проходящем свете можно определить – произошла в этом отверстии реакция или нет, и сделать вывод о присутствии искомых молекул. Принципиально важно, что таким образом можно одновременно анализировать тысячи и тысячи участков цепочки ДНК», – объясняет принцип действия бионаносенсора Василий Климов.
Проект будет реализовываться в Физическом институте им. П.Н. Лебедева РАН и в Институте спектроскопии РАН. В ФИАНе в Лаборатории Нанооптики под руководством доктора физ.-мат.наук Василия Климова будет разрабатываться идеологическая часть проекта и осуществляться математическое моделирование.
Экспериментальная часть проекта будет реализовываться в Институте спектроскопии в Лаборатории Атомной нанооптики под руководством профессора Виктора Балыкина. Эта лаборатория является фактически единственной в России, способной проводить эксперименты мирового уровня в области нанооптики и метаматериалов.
Научное направление, к которому относится развивающийся проект, носит название «нанооптика, плазмоника и метаматериалы». Это крайне интересное, перспективное и, в то же время, требующее высочайшей квалификации направление. Факт, что ключевой вклад в его создание и развитие сделан именно учеными из России, особенно важен.
Поэтому вполне закономерно, что проект Василия Климова, который также внес существенный вклад в развитие этого направления, получил поддержку на консультативном совете в Сколково. Представлял проект один из самых известных в мире специалистов по нанооптике и метаматериалам – наш соотечественник профессор Владимир Шалаев, который сейчас работает в Университета Пердью (США) и одновременно является членом консультативного научного совета фонда «Сколково».
- Источник(и):
- Войдите на сайт для отправки комментариев