Пять стихий: воздух
Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.
Какое-то время продолжим трудится на общее благо по адресу
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.
Спасибо, ждём вас на N-N-N.ru
Бывают ли материалы, на 90 процентов состоящие из воздуха? И при этом твердые, тепло- и звукоизолирующие, проводящие электричество и вообще способные найти себе применение сразу в нескольких отраслях промышленности? Читайте в очередной статье из нашего цикла «Пять стихий» об аэрогелях — наноматериале, заполненном воздухом.
Свойства аэрогелей
На фото ниже представлен один из самых распространенных аэрогелей — из диоксида кремния. Его еще называют «голубым дымом» за красивый опалово-голубоватый оттенок. Внешне этот аэрогель выглядит как кусок льда, нона самом деле он удивительно легкий и твердый. И совершенно сухой. На ощупь похож на пенопласт, но никак не на желе или лед. Если уронить кусочек такого «дыма» на твердую поверхность, то он запрыгает, как надувной мячик, а звук будет похож на звон стеклянной елочной игрушки.
NASA /JPL
Существуют и другие аэрогели самых разных расцветок, но такие же невесомые. Какими свойствами обладает этот материал? Вот наиболее характерные:
- очень низкая плотность (до 160 грамм на кубический метр),то есть в шесть раз легче воздуха;
- крайне низкая теплопроводность (до 0,016 ватт на метр на кельвин), в 10 разниже, чем у дерева;
- низкая скорость распространения звука (до 70 метров в секунду);
- чрезвычайно низкий коэффициент преломления света (до1.0002);
- электрическая проводимость может меняться в широких пределах в зависимости от используемого материала.
Большинство аэрогелей легко ломаются руками, несмотря на свою твердость. То есть они хрупкие, но твердые — некоторые выдерживают без разрушения вес,превышающий собственный в 4000 раз.
Кирпич поддерживается эфемерным брусочком из диоксида кремния. NASA /JPL
Впрочем, уже созданы пластичные аэрогели, которые можно гнуть и по которым можно даже стучать молотком. Как раз такие материалы планируется использовать для утепления скафандров, создаваемых в рамках будущей марсианской экспедиции. И не только скафандров — производители одежды и туристического снаряжения уже сейчас активно экспериментируют с подобными материалами.
У аэрогелей есть еще один уникальный параметр — отношение площади полной поверхности к весу: до 3200 квадратных метров на грамм. Это означает, что если представить площадь всей поверхности в виде единой плоскости, то одного грамма этого материала хватит, чтобы покрыть половину футбольного поля! Как такое может быть? Все дело в структуре этого удивительного материала. Оказывается, что аэрогель — это почти сплошная «дырка от бублика»:сверхтонкие твердые стеночки толщиной всего в несколько нанометров (одна миллионная миллиметра) образуют сложный трехмерный лабиринт из пор и слоев.Сами поры имеют размеры от десятков до сотен нанометров и в обычных земных условиях заполнены воздухом — он заполняет 90–99 процентов объема материала. А при случае эти супергубки отлично заполняются и чем-то еще. Например, нефтью,разлитой по поверхности моря из-за аварии танкера. Кроме того, такая огромная площадь при столь малом весе замечательно подходит для создания ионисторов — суперконденсаторов с емкостью в сотни и тысячи фарад (емкость обычного конденсатора обычно измеряется микрофарадами). Возможно, именно они заменят в ближайшем будущем классические аккумуляторы. И не забудем про катализаторы, ведь в них площадь поверхности также играет решающую роль — от нее зависит эффективность воздействия катализатора на химическую реакцию.
Что такое гель
Итак, в основе уникальных свойств аэрогелей в первую очередь лежит их пространственная структура с крошечными открытыми порами. Материал стенок, безусловно, также имеет значение. Например, от него в значительной мере зависят механические свойства, а также электропроводность конкретного аэрогеля.
Но как на практике можно получить такие замысловатые полые«пузырики» с твердыми стенками? Ответ кроется в названии самого материала. Именно гели являются исходным материалом для создания аэрогелей. Те самые гели, влажные и тяжелые, вроде холодца. Всем известный желатин, между прочим, также подходит для создания этого наноматериала. Кстати, а что такое гель? На ощупь мы все хорошо представляем себе эту субстанцию, но что она представляет собой на микроуровне? Оказывается, любой гель состоит из двух компонентов с разными физическими свойствами: твердой фазы в виде непрерывной пористой пространственной структуры, пронизывающей весь образец, и жидкой фазы, заполняющей поры. Причем характерный размер твердой фазы — как раз десятки нанометров, ведь твердая фаза в гелях — это обычно конгломераты наночастиц или длинных макромолекул.
Типичный гель можно себе представить в виде поролоновой губки для мытья посуды, пропитанной жидкостью. Только поры в такой губке в сотни тысяч раз меньше, чем в той, что у нас на кухне. А что получится, если удалить всю жидкость из такой губки? Получится сухая губка с заполненными воздухом порами. Так ведь это и есть аэрогель! Выходит, что для получения этого материала достаточно просто высушить любой гель? К сожалению, нет.Практика показывает, что при испарении жидкой фазы гель начинает быстро уменьшаться в объеме и, в конце концов, мы получим маленький плотный комочек сухого вещества, а не желаемый пористый наноматериал со сверхмалой плотностью. Но почему поролоновая губка высыхает, не уменьшаясь в объеме, а ее гелевый аналог ведет себя совершенно по-другому? И как с этим бороться?
Собственно говоря, коренным отличием нашей модели с губкой от реального геля являются размеры пор: у губки они исчисляются миллиметрами, а у гелей – десятками нанометров, то есть разница составляет примерно пять порядков. Теперь представим себе, как происходит испарение жидкости из пор: в какой-то момент жидкость перестает полностью их заполнять, и появляется граница между жидкостью и парами этой жидкости, смешанными с воздухом. Как известно, на границе жидкости всегда действуют силы поверхностного натяжения, которые приводят к взаимодействию поверхности жидкости и стенок сосуда (в нашем случае стенок пор). Если стенки хорошо смачиваются, то поверхность жидкости приобретает вогнутую форму и на стенки действует сила, тянущая их внутрь сосуда. Величина этой силы, приходящаяся на единицу длины стенки поры вдоль границы жидкости, не зависит от радиуса поры. Но при этом в геле стенки этих пор в тысячи раз тоньше, чем в нашей губке. Получается, что прилагаемая к стенкам удельная сила в геле и в губке одна и та же, а вот толщина этих стенок и, соответственно, ихм еханическая прочность — совсем разные. Не удивительно, что поры губки выдерживают высыхание наполняющей их жидкости, апоры геля — нет. Отсюда и «скукоживание» геля при высыхании — поверхность жидкости в порах просто ломает хрупкие стенки одну за другой по мере испарения,и в результате мы получаем сухой слипшийся комок из изломанных стенок, а не ажурную конструкцию,свойственную аэрогелям.
Как высушить гель
Каким образом можно удалить жидкость из хрупких пор геля, не разрушив его структуру? Решение было найдено еще в 1931 году американским ученым Самуэлем Кистлером (Samuel Stephens Kistler). По некоторым сведениям, он поспорил со своим коллегой, что первым сможет провести эту деликатную операцию, и выиграл спор. Идея Кистлера состояла в том, чтобы избавиться от поверхности жидкости и связанных с ней сил натяжения, раз уж именно поверхность и является причиной всех бед. Представим себе, что мы имеем запаянную стеклянную колбу, которая наполовину заполнена жидкостью. Через прозрачные стенки мы будем видеть границу жидкости и газа над ней. Теперь начнем нагревать колбу. Жидкость внутри будет испаряться, что приведет к повышению количества и давления пара над ее поверхностью. А также, естественно,и температуры этого пара. Если продолжать нагревание достаточно долго, то в определенный момент давление и температура внутри колбы достигнут такого уровня, что плотность пара сравняется с плотностью жидкости и граница между ними просто исчезнет. А сам пар и жидкость потеряют знакомые нам характеристики(например, жидкость станет сжимаемой) и превратятся в одно неразделимое целое. Вместе с поверхностью раздела фаз исчезнут и силы поверхностного натяжения. Такие температура и давление, при которых пар перестает отличаться от жидкости, а жидкость от пара, в термодинамике называются критическими и изображаются в качестве *критической точки*на фазовой диаграмме:
Для воды критическая температура и давление составляют 374 градуса Цельсия и 218атмосфер соответственно. То есть, если мы повысим давление в камере с гелем на водной основе до 218 атмосфер и выше и затем поднимем температуру выше 374 градусов Цельсия, то какое-либо различие между паром и водой исчезнет — мы получим так называемую
сверхкритическую жидкость
. Внутри каждой поры геля окажется очень плотный пар или вода, что при таких условиях по сути одно и то же. Если теперь начать понижать давление до критического и ниже, сохраняя температуру выше критической, то этот плотный пар начнет постепенно выходить из геля без какой-либо конденсации. Затем можно начать понижать и температуру до тех пор,пока остатки пара не покинут гель и он не превратится в нужный нам сухой аэрогель, заполненный воздухом. Описанный процесс называется суперкритической сушкой и показан красной стрелкой.
Так как, по этому сценарию, в процессе превращения жидкости в пар не возникает границы раздела жидкой и газообразной сред, то не возникает и сил поверхностного натяжения внутри пор и они остаются целыми в процессе сушки. Зеленая стрелка обозначает сценарий сушки, когда жидкость превращается в пар обычным порядком. В этом случае мы имеем одновременное существование двух фазовых состояний, границу раздела и,соответственно, разрушение структуры геля. Синяя стрелка показывает, что возможен и третий путь, который называется сублимационной сушкой. По этому сценарию жидкость внутри пор сначала переводится в твердое состояние путем заморозки, а затем, при пониженном давлении, твердая фаза превращается в газообразную, минуя жидкую (и связанные с ней проблемы с поверхностным натяжением). На практике такой вариант действительно позволяет получать некоторые виды аэрогелей.
В реальной жизни прямое использование гелей на водной основе для изготовления аэрогелей очень неудобно из-за высоких критических температуры и давления воды. Поэтому до начала сушки обычно производится замещение первоначальной жидкой составляющей геля на более подходящую в смысле критической точки. Таким заместителем может выступать, например, метиловый спирт (критическая температура — 250 градусов Цельсия, критическое давление — 77 атмосфер). Именно спирты использовал Кистлер для получения аэрогелей со стенками из неорганических соединений. Для органики он рекомендовал сжиженный пропан в качестве жидкой составляющей геля при суперкритической сушке. Также находят применение ацетон и сжиженный углекислый газ. Вообще «рецептов» приготовления аэрогелей существует на настоящий день довольно много. В Интернете даже можно найти рекомендации по его изготовлению в домашних условиях.
В России исследованием аэрогелей занимаются сразу несколько научных центров, в том числе и Центр композитных материалов при НИТУ «МИСиС». Научный сотрудник Центра, кандидат физико-математических наук Федор Сенатов дал следующий комментарий относительно технологических возможностей применения сверхкритического состояния вещества: «Интересной и полезной особенностью вещества в сверхкритическом состоянии (флюид) является то, что с помощью него можно не только формировать пористость в геле, но и модифицировать сам материал, а также удалять из него ненужные примеси. Например, можно растворить в сверхкритическом флюиде лекарственное вещество и обработать этим флюидом полимерный гель. Когда флюид проникнет в гель, то принесет с собой и лекарство, которое останется в полимере после снижения давления и ухода флюида. Таким образом, получится аэроэгель, который можно использовать в медицине для ультрафильтрации биологических жидкостей с одновременным лекарственным действием».
Тем же способом можно удалять ненужные примеси из материала. Данный метод, получивший в литературе название сверхкритическая флюидная экстракция (СФЭ), достаточно давно используется как в лабораторных исследованиях, так и в промышленном производстве. Самым распространенным примером экстракции сверхкритическими флюидами является применение скСО2 для декофеинизации кофе. Более чем сто тысяч тонн декофеинизированного кофе производится в мире ежегодно с применением скСО2.
Из чего делают аэрогели
Что касается твердой составляющей аэрогелей, то используемые материалы можно разделить на несколько классов:
Диоксид кремния (силикагель). Это наиболее известный материал, который знаком нам в виде гранул внутри бумажных пакетиков-осушителей и в кошачьих туалетах. Полученный из него аэрогель почти прозрачен, имеет голубоватый оттенок за счет релеевского рассеяния света на нанопорах, обладает чрезвычайно низкой теплопроводностью, хрупкий, но твердый.
**Карбон ** (углерод). Карбоновый аэрогель непрозрачен,характеризуется чрезвычайно высокой пористостью с показателем площади полной поверхности к весу 400–1000 квадратных метров на грамм.Проводит электричество, что делает его одним из наиболее популярных материалов для ионисторов с емкостью в тысячи фарад. Кроме того, такой аэрогель поглощает почти 100 процентов излучения в инфракрасном диапазоне, а это очень ценное качество для солнечной энергетики.
Оксиды металлов. Соответствующие аэрогели широко используются для изготовления катализаторов. Обычно в их состав входит оксид алюминия с добавкой никеля. NASA использует алюминиевый аэрогель с добавкой гадолиния и тербия для регистрации космических частиц сверхвысоких энергий. Дело в том, что эти аэрогели флуоресцируют при попадании в них таких частиц, что позволяет их регистрировать.Причем мощность излучения зависит от энергии частицы. Окраска аэрогелей на основе оксида металла варьирует в широких пределах.
Органические полимеры. Например, аэрогель и загар-агара, того самого, который добавляют во фруктовое желе. Другой органический материал — целлюлоза — используется для производства гибких аэрогелей.
Халькогены. К этой группе относятся: сера, селен,теллур и т.д.
Селенид кадмия. Аэрогель, изготовленный из этого материала, обладает полупроводниковыми свойствами.
Более того, свойства аэрогелей можно дополнительно изменять с помощью введения различных модифицирующих добавок в состав твердой фазы.
В настоящее время выделяют девять основных сегментов промышленности, в которых аэрогели нашли свое применение:
Себестоимость производства аэрогелей в последние годы снижается рекордными темпами, и уже сегодня любой желающий может купить относительно недорогие теплоизоляторы на основе гибкого аэрогеля, в том числе и в России. Ожидается, что объем рынка аэрогелей составит 2 миллиарда долларов к 2022 году. Широкое внедрение этого удивительного представителя наноматериалов — дело ближайшего будущего, так что не удивляйтесь, если через несколько лет вы приедете на переговоры в офис с прозрачными стенами из аэрогелевых стеклопакетов, и там вам предложат чай из воды, отфильтрованной в аэрогелевом фильтре, а звонить начальнику вы будете со смартфона,который питается от аэрогелевого суперконденсатора.
Автор: Сергей Петров
- Источник(и):
- Войдите на сайт для отправки комментариев