Датчики из графена "чувствуют" отдельные молекулы
Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.
Какое-то время продолжим трудится на общее благо по адресу
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.
Спасибо, ждём вас на N-N-N.ru
При увеличении чувствительности любого детектора конечная цель состоит в том, чтобы достичь «предела чувствительности», то есть научиться регистрировать отдельные кванты (заряда, излучения и т.д. – в зависимости от назначения детектора). Для химических датчиков таким квантом является одна молекула.
Задача определения мизерной концентрации различных газов очень важна как для экологии, так и для промышленности, не говоря уж о борьбе с терроризмом и других приложениях в области обороны. Чувствительность современных твердотельных датчиков ограничена флуктуациями, обусловленными тепловым движением зарядов и дефектов, в результате чего уровень шума на много порядков превышает сигнал от отдельной молекулы. Но ученым из России (Институт микроэлектронных технологий, Черноголовка), Великобритании (University of Manchester) и Голландии (University of Nijmegen) все же удалось добиться предельного уровня разрешения. Для этой цели они использовали графен [F.Schedin et al, Nature Mater. 6, 652 (2007)]. Принцип работы графенового датчика, как и его твердотельных предшественников, основан на изменении электрической проводимости при адсорбции молекул (из-за изменения концентрации носителей заряда), см. рис.1.
Рис.1. Изменение удельного электрического сопротивления графена Dr/r со временем при воздействии различных газов с относительной концентрацией 10-6. I – до воздействия, II – в процессе воздействия, III – после окончания воздействия, IV – в процессе отжига при T = 150оС. Положительная (отрицательная) величина Dr/r соответствует электронному (дырочному) допированию графена при адсорбции молекул из газовой фазы.
Отличительной особенностью графена является то, что изменение проводимости удается зарегистрировать даже если число электронов в образце становится больше или меньше всего на единицу (см. рис. 2).
Рис.2. Изменение холловского сопротивления графена в магнитном поле с H = 10 Тл при адсорбции (синяя кривая) и десорбции (красная кривая) молекул NO2. Горизонтальные линии соответствуют изменению числа электронов в образце на единицу. Зеленая линия – контрольный эксперимент в чистом гелии.
Суперчувствительность графена обусловлена 1) его квазидвумерностью (отсутствуют «внутренние» атомы, на которых адсорбция невозможна, то есть «работает» весь образец); 2) его высокой металлической проводимостью (найквистовский шум очень слабый даже в отсутствие носителей заряда, когда несколько лишних электронов существенно изменяют концентрацию носителей); 3) малым количеством структурных дефектов, что гарантирует низкий уровень 1/f шума; 4) возможностью измерять сопротивление 4-контактным методом, используя низкоомные электрические контакты. Здесь необходимо отметить, что графеновые датчики способны регистрировать не любые молекулы, а лишь те, которые адсорбируются на графене. И тем не менее беспрецедентно высокая чувствительность и миниатюрные размеры таких датчиков позволят им найти широкое применение в самых различных областях.
Автор – Л.Опенов
- Источник(и):
- Войдите на сайт для отправки комментариев