Новые кристаллы-тяжелоатлеты из Японии
Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.
Какое-то время продолжим трудится на общее благо по адресу
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.
Спасибо, ждём вас на N-N-N.ru
Исследователи из Японии разработали кристаллический материал, который при облучении ультрафиолетовым и видимым светом способен к обратимому сгибанию по аналогии с мышцами человека.
Новый материал способен поднимать металлические шарики, масса которых в 600 раз превосходит массу самого кристалла, благодаря чему он может выступать в роли беспроводной альтернативы использующимся в настоящее время в микроэлектромеханических системах пьезоэлектрическим кристаллам.
Рис. 1. Кристаллический материал поднимает металлический шарик. При облучении ультрафиолетом новый материал может поднимать нагрузку в сотни раз больше собственного веса (рисунок из J. Am. Chem. Soc., 2010, DOI: 10.1021/ja105356w).
В 2007 году Масахиро Ирие (Masahiro Irie), в то время работавший в Университете Киюши продемонстрировал, что микроразмерный кристалл (10–100мкм), состоящий из фотохромных молекул – диарилэтенов может изменять свою форму под воздействием ультрафиолетового излучения. Результаты тех экспериментов давали понять, что незначительные фотоинициированные изменения формы отдельных молекул могут приводить к изменениям формы целого кристалла на макроуровне. Однако, полученные в 2007 году кристаллы были слишком хрупкими и маленькими для любого применения.
В новой работе Ирие со своим коллегой Масаказу Моримото (Masakazu Morimoto) (в настоящее время оба работают в Университете Риккио) описывает создание двухкомпонентного кристаллического материала, который может сгибаться на макроуровне, тем самым подтверждая, что инициируемые светом изменения конформаций отдельных молекул могут приводить к движению на макроуровне.
Новый материал, полученный исследователями, материал состоит из диарилэтена и перфторнафталина, размеры полученных кристаллических образцов составляют 1–5 мм в длину, 0.2–1.5 мм в ширину и 10–50 мкм толщины. Эксперименты показали, что облучение материала ультрафиолетом или видимым светом заставляет материал изгибаться, при этом сила фотоинициированной деформации настолько велика, что позволяет поднять стальной шарик диаметром 3 мм, который в 600 раз тяжелее самого деформирующегося кристалла.
К удивлению ученых, результаты эксперимента показали, что полученный материал может выдерживать нагрузку в 100 раз большую, чем может выдержать мышечная ткань человека. Кристаллический материал демонстрирует большое фотоинициируемое напряжение, около 44 МПа, которое может сравниться с такими пьезоэлектриками, как цирконат-титанат свинца.
Изучающий механические свойства материалов на молекулярном уровне Амар Флуд (Amar Flood) из Университета Блумингтона отмечает, что работа является наглядной демонстрацией того, как контролируемое движение молекул влияет на макроскопические материалы, предполагая, что работа Ирие станет классикой. Он отмечает, что очень небольшое количество молекулярных систем могут похвастаться производительностью хотя бы сравнимой с производительностью мышц человека.
Ирие предполагает, что микроэлектромеханические системы на основе нового кристаллического материала могут применяться для беспроводной работы с биологическими клетками или для фотоинициируемого управления клапанами микрореакторов, связывая перспективы новых полимеров главным образом с тем, что для работы устройств на их основе не требуются провода и электропитание.
По материалам:
- Источник(и):
- Войдите на сайт для отправки комментариев