Новый метод интегрирования нанотрубок в тело транзистора

Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.

Какое-то время продолжим трудится на общее благо по адресу https://n-n-n.ru.
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.

Спасибо, ждём вас на N-N-N.ru

Минуло 9 лет с тех пор, как компания IBM первой изготовила полевой транзистор, в котором роль канала проводимости выполняет углеродная нанотрубка. С тех пор неоднократно предпринимались попытки разработать полевые транзисторы альтернативных схем, в которых, в частности, пытались использовать подвешенные нанотрубки.

Подобная конструкция транзистора позволяет уменьшить низкочастотный шум и уменьшить гистерезис изменения потенциала затвора. К настоящему времени освоены две основные методики получения подвесных нанотрубок между электродами стока и истока:

  • литография с последующей металлизацией и травлением, а также
  • CVD-метод.

Однако обе вышеперечисленные методики обладают рядом недостатков. В случае литографии полученная нанотрубка оказывается загрязненной остатками резиста, что делает устройство фактически непригодным для дальнейшего использования. В случае осаждения из газовой фазы для получения нанотрубки необходима высокая температура, а присутствие водорода в реакционной сфере приводит к образованию гидридов, что ограничивает использование многих металлов.

truba_1.jpg Рис. 1. Схематическое изображение первого серийного полевого транзистора, где в качестве канала проводимости используется подвесная углеродная нанотрубка.

Коллектив швейцарских ученых предложил свой выход из сложившейся ситуации. Они решили выращивать нанотрубку непосредственно между контактами, без их предварительного покрытия металлом, и лишь потом провести металлизацию с использованием теневой маски (рис. 2).

truba_2.jpg Рис. 2. Схематическое изображение технологии, примененной авторами статьи.

Электрическая характеристика полученного полевого транзистора (с шириной канала 3 мкм) подтверждает очень малую величину наблюдаемого гистерезиса – при пороговом напряжении 1 В, отношении входного тока к выходному > 10X104 при напряжении сток-исток 20 мВ гистерезис изменения потенциала затвора равен 8 +/- 5 мВ, а гистерезис тока составляет лишь 0.09+/-0.06 нА, что соответствует 0.3% от значения входной силы тока. Варьируя ширину маски, расстояние между маской и ОУНТ, а также угол наклона во время процесса металлизации, можно получить каналы различной ширины.

В статье исследователи рассмотрели два крайних случая – с шириной канала 3 мкм и 30 нм. Их различные вольтамперные характеристики представлены на рисунках 3 и 4.

truba_3.jpg Рис. 3. Вольтамперные характеристики для полевого ширококанального транзистора с минутным гистерезисом.

truba_4.jpg Рис. 4. Вольтамперные характеристики для полевого короткоканального транзистора без гистерезиса.

В дальнейшем, авторы статьи рассчитывают продолжить совершенствовать выбранный ими метод получения полевых транзисторов, повышая выход полноценно функционирующих устройств, а также уменьшая его размеры.

По материалам:

Пожалуйста, оцените статью:
Ваша оценка: None Средняя: 4.6 (7 votes)
Источник(и):

1.nanometer.ru