О новом способе самоорганизации супрамолекулярных волокон

Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.

Какое-то время продолжим трудится на общее благо по адресу https://n-n-n.ru.
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.

Спасибо, ждём вас на N-N-N.ru

Математическая модель молекулы альтернативного наномотора для нанесения тонких полимерных нитей.

Исследователи из Японии смогли вырастить исключительно длинные супрамолекулярные липофильные гелеобразные волокна с помощью метода самоорганизации в микрокапиллярных каналах. Новый метод позволяет создавать супрамолекулярные нити, длина которых достигает 1 метра, эти нити предполагается использовать в качестве шаблонов для производства токопроводящих полимеров.

Обычные методы получения супрамолекулярных гелей проводятся в массе и обычно приводят к образованию спутанных клубков нанонитей, связанных друг с другом за счет водородных связей, π-π-взаимодействий и ван-дер-Ваальсовых дисперсионных взаимодействий, и этот набор межмолекулярных взаимодействий препятствует образованию макроскопических самоорганизованных систем. Исследователи из группы Соджи Такеучи (Shoji Takeuchi) из Университета Токио смогли обойти эти затруднения, выращивая гель в микрокаппилярных каналах и одновременно стабилизируя их структуру с помощью более жесткого по природе геля.

Раствор мономера для образования полимера помещали в микрокапилляр, куда также добавляли альгинатный гель, игравший роль укрепляющей жидкости. Введение в поток раствора хлорида кальция приводило к быстрому протеканию реакции гелеобразования. По словам Такеучи, для нового метода очень важно быстрое гелеобразование, а альгинатный золь (коллоидная система, содержащая очень небольшие по размеру частицы) образуется практически немедленно от контакте исходных материалов с ионами кальция.

1322107613eecc4.jpg Рис. 1. Альгинатный гель, применявшийся для
покрытия растущих волокон, позволил исследователям
вырастить исключительно длинные нити. (Рисунок из
Angew. Chem., Int. Ed., 2011, DOI: 10.1002/anie.201104043).

С помощью липофильных красителей и флуоресцирующих нанобусин исследователям удалось визуализировать как супрамолекуклярные нити, так и гелевую оболочку, применявшуюся для их выращивания соответственно; микроскопия позволила установить направление роста формирующихся нановолокон. Подобные системы были получены и без гелевой внешней оболочки, но в отличие от систем, полученных в присутствии геля, он отличались значительной хрупкостью.

Длину растущего жгута нановолокон можно регулировать, изменяя скорость инъекции исходных материалов в микроканал, при определенных условиях можно добиться выращивания системы длиной в 1 метр. Такое волокно вытянули из реакционного сосуда с помощью обычного пинцета (см. видео).

Высокая прочность супрамолекулярных волокон, полученных новым способом, позволяет использовать их в качестве шаблонов для синтеза полианилина с помощью метода окислительной полимеризации. Мономеры удерживаются в волокне за счет непрочных межмолекулярных взаимодействий, что приводит к образованию полимера без агрегации полимерных нитей. Образовавшиеся в результате такой темлатной полимеризации волокна полимера также оказались достаточно прочными для того, чтобы с ними можно было бы работать с помощью щипцов, электропроводность образующегося полимера достаточна для его применения в создании сенсоров.

Пожалуйста, оцените статью:
Ваша оценка: None Средняя: 5 (5 votes)
Источник(и):

1. chemport.ru