Об электронной "автостраде" для квантовых компьютеров
Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.
Какое-то время продолжим трудится на общее благо по адресу
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.
Спасибо, ждём вас на N-N-N.ru
Ученые-физики из университета Райс (Rice University) создали так называемую электронную «автостраду», устройство, которое более точно описывается как «квантовый топологический изолятор /quantum spin Hall topological insulator». Такое устройство является одним из фундаментальных блоков, используемых для создания квантовых частиц, с помощью которых осуществляется хранение и обработка данных в квантовом компьютере.
Известно, что обычные компьютеры используют двоичную систему кодирования даных, все данные предоставлены набором битов, которые могут принимать два значения – 1 и 0. Однако, компьютеры функционирующие на принципах квантовой механики, используют квантовые частицы или кубиты (qubits), которые в одно и тоже время могут иметь значение и 1 и 0, благодаря некоторым причудам квантовой механики.
«Для того, что бы создать невероятно мощный квантовый компьютер мы не нуждаемся в большом количестве кубитов» – объясняет Рую-Рую Дю (Rui-Rui Du), ученый-физик из университета Райс. – «С точки зрения вычислительной мощности кремниевый процессор с 1 миллиардом транзисторов на кристалле эквивалентен по производительности квантовому процессору с 30 кубитами».
Ученые и исследователи, работающие над проблемой квантовых вычислений, использовали множество различных методов создания кубитов и каждый метод давал положительные результаты. Но не во всех методах успешно решалась основная проблема, проблема достаточно длительного хранения записанных в кубит данных. Не все виды кубитов оказались способны хранить информацию даже на время, необъодимое для обработки этих данных.
Подход, реализуемый на практике Дю и его коллегой Иваном Кнезом (Ivan Knez), называется «топологические квантовые вычисления». Как ожидается, что квантовые процессоры, функционирующие на основе этого метода, будут более надежными и отказоустойчивыми, чем процессоры других типов. Это будет происходить благодаря тому, что каждый кубит топологического квантового процессора будет сделан из пары связанных квантовых частиц.
Основной трудностью в реализации метода топологических квантовых вычислений заключается в том, что физики должны создать и отслеживать состояние устойчивой пары квантовых частиц, которые являются майорановскими фермионами (majorana fermions). Существование таких частиц было теоретически обосновано еще в 1937 году, но попытки их создания в пределах кристаллов квантовых процессоров начались только совсем недавно.
Физики пытаются создать квантовые частицы, «соединяя» двумерный топологический изолятор с подложкой из сверхпроводящего материала. Получившаяся структура обладает весьма необычными и экзотичными электрическими свойствами. Хотя она по прежнему остается изолятором, электрический ток способен течь в пределах очень узкой полосы по внешним краям изолятора. Таким образом, вокруг этой структуры формируется нечто вроде электронной «автострады», движение тока по которой приводит к появлению невероятных эффектов.
Ученые ожидают, что в некоторых точках, где соединяются материалы изолятора и сверхпроводника, под влиянием движения электронов будут формироваться устойчивые майорановские фермионы, которые могут использоваться в качестве кубитов для квантовых вычислений.
Создание и совершенствование методов создания нового топологического изолятора заняло у ученых чуть более года. Устройство делается на основе обычного полупроводникового материала, используемого для изготовления приборов ночного вида. «В ходе дальнейших экспериментов мы намерены выяснить, сможем ли мы изменять и точно измерять состояние этих квантовых частиц, майорановских фермионов, что позволит точно ответить на вопрос, являются ли они хорошими кандидатами на роль кубитов квантовых процессоров» – добавил Дю.
- Источник(и):
-
1. TgDaily
- Войдите на сайт для отправки комментариев