Предложен эффективный способ круглосуточной переработки солнечной энергии
Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.
Какое-то время продолжим трудится на общее благо по адресу
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.
Спасибо, ждём вас на N-N-N.ru
Запасать энергию при отсутствии солнечных лучей должны чаны с солевыми расплавами, которые будут нагревать воду, питающую паровую турбину.
Основным препятствием массового распространения солнечных электростанций является остановка их работы ночью и при пасмурной погоде. Решение этой проблемы, которое пытаются воплотить на практике различные исследователи, может быть таким. Система зеркал перенаправляет и фокусирует солнечные лучи на центральной башне, в которой содержится солевой расплав. Нагреваясь, он сообщает тепловую энергию воде, а та, превращаясь в пар, обеспечивает работу паровой турбины. Соли используются потому, что им лучше всего удаётся сберегать тепло, и они могут действовать в широком диапазоне температур.
Рис. 1. Миниатюрный прототип, доказавший работоспособность «солнечно-солевой» технологии (фото MIT).
Главным недостатком такой системы является обилие дорогостоящих механизмов подачи расплава и трансфера энергии, что затрудняет её коммерциализацию. Специалисты из американского Массачусетского технологического института (MIT) под руководством Александра Слокама предложили объединить «складирование» солнечной энергии и нагрев воды в одной ёмкости с хорошей теплоизоляцией.
Лучи будут поступать туда через небольшое отверстие в верхней части, отражаясь от расположенных на близлежащем холме зеркал (холм, по всей видимости, нужен, чтобы сократить расходы на поддерживающие конструкции). «Концентрированный» солнечный свет должен нагревать солевой расплав, содержащийся в контейнере. При этом успевшая нагреться верхняя часть соли будет отделена от более холодной подвижной горизонтальной перегородкой. По мере нагревания расплава перегородка сдвинется вниз, а циркулирующая вокруг ёмкости вода начнёт превращаться в пар и давать энергию для паровой турбины.
Как подсчитали г-н Слокам и его коллеги, в благоприятном месте пара энергетических установок, включающих несколько контейнеров с расплавом на основе нитратов натрия и калия высотой 5 м и диаметром 25 м каждый, сможет выдать 40 МВт электроэнергии. Этого достаточно для обеспечения примерно 20 тыс. частных домов. Поскольку система способна аккумулировать солнечную энергию на десять дней вперёд, ночь и кратковременная непогода ей не страшны.
Кроме того, была вычислена примерная стоимость такой энергии — от 7 до 33 центов за 1 кВт•ч. Для сравнения: киловатт-час для стандартной солнечной электростанции стоит около 30 центов.
Специалисты испытали технологию в стенах лаборатории и теперь рассчитывают соорудить пробную установку мощностью 20–100 кВт.
Результаты исследований изложены авторами в статье:
Alexander H. Slocuma, Daniel S. Codda, Jacopo Buongiornob, Charles Forsbergb, Thomas McKrellb, Jean-Christophe Navec, Costas N. Papanicolasd, Amin Ghobeitya, Corey J. Noonea, Stefano Passerinib, Folkers Rojasa and Alexander Mitsos Concentrated solar power on demand. – Solar Energy. – Volume 85. – Issue 7. – July 2011. – Pages 1519–1529.
- Источник(и):
-
1. MIT News
- Войдите на сайт для отправки комментариев