В экспериментах с нанотрубками зарегистрированы сложные квазичастицы
Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.
Какое-то время продолжим трудится на общее благо по адресу
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.
Спасибо, ждём вас на N-N-N.ru
Физики из Киотского университета зарегистрировали появление трионов в полупроводящих углеродных нанотрубках при комнатной температуре.
При поглощении фотонов полупроводником электроны, как известно, попадают из валентной зоны в зону проводимости, оставляя после себя дырки — квазичастицы с положительным зарядом. Фотовозбуждённая пара частиц, связываемая кулоновскими силами, может образовать новую нейтральную квазичастицу, называемую экситоном; через некоторое непродолжительное время электрон и дырка рекомбинируют (аннигилируют) с испусканием фотона. Экситоны в нанотрубках отличаются высокой энергией связи, которая обычно составляет несколько десятых долей электронвольта.
Положительно заряженный трион можно получить из экситона, «прикрепив» к нему дырку. Такая квазичастица напоминает ионизованную молекулу водорода, но связи в трионе менее крепкие: его отличие от двух протонов и электрона в молекуле Н2+ состоит в том, что эффективные массы электрона и дырки практически равны.
Существование трёхчастичных электрон-дырочных комплексов в полупроводниках было предсказано в 1958 году, а экспериментальное подтверждение эта идея получила в конце ХХ века. Однако в нанотрубках трионы ещё не наблюдались.
Рис. 1. Трион — электрон и две дырки — в углеродной нанотрубке (иллюстрация Alan Stonebraker).
Успех проведённого опыта обеспечили акцепторные примеси. Полученные легированные нанотрубки исследовались спектроскопическими методами, и при анализе снятых спектров фотолюминесценции и поглощения физики обнаружили дополнительный пик, который отходит от экситонного в область меньших энергий. Соответствующая новому пику энергия не изменялась при использовании разных примесей и варьировании их концентраций. Кроме того, с увеличением концентрации трионный пик становился более выраженным.
Интересно, что упомянутые пики оказались разнесены на очень большое энергетическое «расстояние» — (0,1–0,2) эВ. Учёные связывают это с квантовомеханическим эффектом обменного взаимодействия.
Полная версия отчёта опубликована в статье:
Ryusuke Matsunaga, Kazunari Matsuda and Yoshihiko Kanemitsu Observation of Charged Excitons in Hole-Doped Carbon Nanotubes Using Photoluminescence and Absorption Spectroscopy. – Physical Review Letters. – V.106. – 037404 (2011) [4 pages].
- Источник(и):
- Войдите на сайт для отправки комментариев