Можно ли дополнить генетический алфавит?

Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.

Какое-то время продолжим трудится на общее благо по адресу https://n-n-n.ru.
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.

Спасибо, ждём вас на N-N-N.ru

Выяснено, как могут сочетаться в двуспиральной ДНК неканонические искусственные азотистые основания.

Генетический алфавит состоит из четырёх букв — А, Т, Г, Ц, которые соответствуют четырём азотистым основаниям. Водородные силы между парами комплементарных азотистых оснований держат вместе две нити спирали ДНК.

Но четыре основания, по-видимому, не предел. По мнению исследователей из Института Скриппса (США), генетический алфавит может быть дополнен новыми буквами, не нарушая при этом биологических функций ДНК.

В лаборатории Флойда Ромесберга давно колдуют над новыми азотистыми основаниями, которые можно было бы встроить в ДНК. В 2008 году здесь удалось получить такие дополнительные буквы, названные NaM и 5SICS, которые в двуспиральной ДНК стояли друг против друга и могли реплицироваться при удвоении цепей молекулы и синтезе РНК на ДНК-шаблоне. Но при этом исследователи не могли понять, почему новые искусственные основания удерживаются в ДНК. Их обнаружили, проверяя всевозможные нуклеотид-подобные молекулы на способность участвовать в процессах транскрипции и репликации. И сразу же было замечено, что, несмотря на свою эффективность, NaM и 5SICS не могут образовывать между собой те связи, которые держат классические пары генетических букв.

4392469521_76269ee414_z.png Рис. 1. Канонические пары оснований в двух цепях ДНК (сверху вниз): аденин–тимин (справа), гуанин–цитозин, аденин–тимин, гуанин–цитозин (рисунок quadralectics).

Уотсон-криковские взаимодействия между аденином и тимином, гуанином и цитозином долгое время считались абсолютно необходимыми для поддержания структуры ДНК. Учёные полагали, что именно такие взаимодействия направляют работу ферментов, удваивающих ДНК; без того просто невозможно было бы построить комплементарную цепь.

Между тем новые искусственные основания, NaM и 5SICS, соединялись друг с другом хоть и попарно, но совершенно иным образом: одна молекула накрывала другую, и параметры взаимодействий не были жёстко фиксированы и явно отличались от канонических. Как в таком случае мог с ними работать фермент? Наткнувшись на NaM или 5SICS, ДНК-полимераза просто не знала бы, какое основание поставить ему в пару.

В статье, опубликованной в журнале Nature Chemical Biology, исследователи рассказывают о том, что они увидели, когда попытались поближе рассмотреть комплекс фермента с нестандартной генетической буквой. Оказалось, что в активном центре фермента искусственные основания NaM и 5SICS становятся в ту позицию, которая предписана всем прочим, каноническим парам.

Так что фермент может однозначно сопоставить одному неканоническому основанию другое — так же, как Т ставится в пару А, а Г — в пару Ц. По словам авторов работы, искусственные буквы удерживаются вместе гидрофобными взаимодействиями, которые и позволяют известные «вольности» во взаимном расположении молекул-напарников.

Будь связи между ними более жёсткими и негибкими, они не смогли бы адаптироваться к требованиям ферментов, работающих с ДНК.

Всё это наводит на мысль, что четыре генетические буквы — это не предел и что вообще эволюционный выбор четвёрки А, Т, Г, Ц мог быть случаен. То есть жизнь теоретически может опираться на иные генетические системы; не исключено, что в будущем генетический код сам по себе может расшириться за счёт включения в него новых букв.

Пока же исследователи собираются найти практическое применение своим результатам: например, в получении ДНК-подобных структур, которые подавляли бы активность каких-нибудь белков и вирусов.

Пожалуйста, оцените статью:
Ваша оценка: None Средняя: 4.6 (8 votes)
Источник(и):

1. Институт Скриппса

2. compulenta.ru