Показана возможность изготовления высокоэффективных тонких солнечных элементов

Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.

Какое-то время продолжим трудится на общее благо по адресу https://n-n-n.ru.
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.

Спасибо, ждём вас на N-N-N.ru

Учёные из Калифорнийского технологического института (США) показали, как можно увеличить долю излучения, поглощаемого тонкими солнечными элементами.

Целью исследователей стало преодоление классического предела эффективности «захвата» излучения, который ещё в 1982 году установил Эли Яблонович, рассматривая объёмные однородные полупроводники. Его теория действует в случае простых световых «ловушек», описываемых с позиций геометрической оптики и построенных на эффекте полного внутреннего отражения на границе раздела полупроводника (скажем, кремния с показателем преломления n = 3,5) и окружающей среды — воздуха. Чтобы увеличить длину пути излучения в материале, максимизировать поглощение и приблизиться к фундаментальному пределу, поверхность раздела в таких схемах текстурируют.

Однако проведённые Яблоновичем расчёты неприменимы к современным солнечным элементам, которые могут иметь неоднородную структуру и толщину, сильно уступающую длине волны излучения. Здесь, как доказали авторы новой работы,

традиционный предел можно преодолеть за счёт увеличения локальной плотности фотонных состояний в поглощающей области устройства.

plasmonics.jpg Рис. 1. Моделирование «плазмонного» солнечного элемента (иллюстрация авторов работы).

Американцы также проанализировали разные способы увеличения плотности состояний, установив, что требуемого эффекта можно добиться с помощью металлических покрытий, фотонных кристаллов, размещаемых над или под активным слоем, либо плазмонных элементов. Последний вариант разобран на рисунке выше, где показаны результаты расчётов для органического поглощающего слоя P3HT:PCBM толщиной 10 нм, на который наносятся периодические массивы серебряных резонаторов. Красным, оранжевым и синим обозначена доля излучения, поглощаемая при использовании массивов с разными параметрами, серым — показатели «чистого» P3HT:PCBM, чёрным — предел Яблоновича.

Предсказать, когда такие технологии начнут применяться на практике, трудно: модификация структуры солнечного элемента, разумеется, усложняет процесс его изготовления, а вместе с этим растёт и его стоимость.

Результаты исследований опубликованы в статье:

Dennis M. Callahan, Jeremy N. Munday, and Harry A. Atwater Solar Cell Light Trapping beyond the Ray Optic Limit. – Nano Lett. – 2012. – 12(1). – pp 214–218; DOI: 10.1021/nl203351k; Publication Date (Web): December 12, 2011.*

Пожалуйста, оцените статью:
Ваша оценка: None Средняя: 5 (8 votes)
Источник(и):

1. Nature News

2. compulenta.ru