Разрабатывается фотоэлемент, использующий фотонное преобразование с повышением частоты
Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.
Какое-то время продолжим трудится на общее благо по адресу
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.
Спасибо, ждём вас на N-N-N.ru
Группа исследователей из Сиднейского университета (Австралия) при содействии немецких партнёров разработала то, что она называет «турбо для фотоэлементов», — фотохимическое преобразование, позволяющее повысить КПД солнечных батарей на основе аморфного кремния до 40%.
«Мы можем увеличить эффективность фотоэлементов, заставляя два фотона излучения из красной части спектра «соединиться» и дать один фотон из жёлтой части спектра, а от него уже получить дополнительное электричество, — сообщает адъюнкт-профессор Тим Шмидт, один из авторов исследования (см. на иллюстрации справа; слева — участвовавший в работе Клаус Липс из Берлинского центра исследования материалов и энергии им. Гельмгольца). — Мы уже достигли рекордных показателей КПД, и хотя нам ещё предстоит увеличить их, тем не менее дальнейший путь развития ясен».
В экспериментах органическому слою преобразователя, находящегося под слоем кремния, удалось превратить свет с длиной волны в 600–750 нм в видимый свет (550–600 нм), который затем трансформировался слоем аморфного кремния напрямую в электроэнергию.
Рис. 1. Хотя первые теоретические изыскания по фотоэлементам такого рода были проведены совсем недавно, уже созданы опытные образцы новых солнечных батарей. (Иллюстрация Yuen Yap Cheng, Burkhard Fuckel, Rowan W. MacQueen et al).
Сам механизм довольно прост: это то, что называется фотонным преобразованием с повышением частоты, когда два фотона с одной длиной волны поглощаются материалом, который затем испускает один фотон с вдвое меньшей длиной волны (его следует отличать от генерации второй гармоники). Всё это известно давно, около полувека; более того, эту технику уже пытались использовать для преобразования инфракрасного излучения в видимое для приборов ночного видения.
А вот его применение для повышения эффективности фотоэлементов — это, бесспорно, новация, которая, хочется надеяться, поможет поднять КПД до обещанных 40%.
Результаты работы представлены в журнале Energy & Environmental Science.
- Источник(и):
-
1. phys.org
- Войдите на сайт для отправки комментариев