Физики впервые наблюдали волны от единичного электрона
Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.
Какое-то время продолжим трудится на общее благо по адресу
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.
Спасибо, ждём вас на N-N-N.ru
Ученым из коллаборации Project 8, в которую входят 27 физиков из шести учреждений США и Германии, впервые удалось наблюдать циклотронное излучение от единичного электрона и измерить его энергию. Результаты своих исследований авторы опубликовали в журнале Physical Review Letters, а кратко с ними можно ознакомиться на сайте Science News.
Установка, в которой коллаборация Project 8 впервые наблюдала электромагнитные волны от единичного электрона, расположена в Вашингтонском университете в Сиэттле.
Она представляет собой небольшую ячейку (размером примерно с чашку эспрессо), заполненную находящимся под низким давлением охлажденным радиоактивным газом криптон-83 и окруженную сверхпроводящим магнитом с индукцией в один тесла. Аналогичное по порядку магнитное поле имеют отклоняющие дипольные магниты Большого адронного коллайдера.
В результате радиоактивного бета-распада изотопа криптон-83 испускается электрон, который во внешнем магнитном поле начинает вращаться по круговой орбите. Как предсказал еще в 1904 году Оливер Хевисайд, это может привести к циклотронному излучению, которое на частоте около 25 гигагерц и определяли чувствительные микроволновые датчики установки. Величина энергии этого излучения, которое удалось определить ученым, равняется 30 электронвольтам.
Рис. 1. Схема экспериментальной установки в Вашингтонском университете. Изображение: APS / Alan Stonebraker, based on a drawing by Ben Monreal / UCS.
Кроме электрона, в результате бета-распада образуется другой лептон — нейтрино. Исследованиям свойств этой частицы и посвящена основная деятельность коллаборации Project 8.
В Стандартной модели физики элементарных частиц масса нейтрино равна нулю, однако данные экспериментов указывают, что лептон все же имеет небольшую массу.
В этом случае значение энергии образующихся в результате бета-распада электронов должно быть меньше, чем если бы нейтрино были безмассовыми, что позволяет ученым получить ограничения на массу этой чрезвычайно легкой частицы.
В настоящее время верхнее ограничение на массу нейтрино равно 0,01–0,05 электронвольтам. Последнее значение в десять миллионов раз меньше массы электрона. Природа такого разрыва между массами лептонов составляет одну из основных загадок физики элементарных частиц.
- Источник(и):
-
1. lenta.ru
- Войдите на сайт для отправки комментариев