Учёные впервые синтезировали аналог графена из атомов бора
Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.
Какое-то время продолжим трудится на общее благо по адресу
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.
Спасибо, ждём вас на N-N-N.ru
Ученые из России, США и Китая синтезировали аналог графена из атомов бора. Двумерный лист толщиной в один атом, подобный графену по структуре, обладает высокой прочностью, проводимостью и другими уникальными свойствами, которые могут пригодиться при создании наноэлектронных устройств и фотоэлементов.
«Ни одна из объёмных форм бора не обладает подобными металлическими свойствами, — рассказывает ведущий автор статьи Натан Гайзингер (Nathan Guisinger) из Аргоннской национальной лаборатории в США. — По всей видимости, мы нашли лидера по прочности на растяжение среди двумерных материалов».
Двумерными материалами называют «плоские кристаллы» толщиной в один или несколько атомов. Хотя они состоят из тех же атомов, что и обычные трёхмерные кристаллы, их физические и химические свойства могут кардинально отличаться от свойств объёмнвх материалов.
Самый знаменитый двумерный материал нашего века — графен, состоящий из атомов углерода. За его создание выпускники МФТИ Андрей Гейм и Константин Новосёлов в 2010 году получили Нобелевскую премию по физике. В отличие от других углеродных материалов графен хорошо проводит электричество, причём электроны в нём должны двигаться со скоростями, близкими к скорости света.
Бор и углерод — соседи в таблице Менделеева, их химические свойства сходны, но метод получения графена, придуманный Геймом и Новоселовым — «отщепление» углеродных листков от поверхности графита — не работает для бора, поскольку структура ни одной из известных аллотропных модификаций бора не содержит явно выраженных слоёв.
Интерес к созданию двумерного бора, названного по аналогии с графеном борофеном, подстегнули около года назад работы двух независимых друг от друга научных групп. В первой работе учёные из Университета Брауна (США) и Университета Цинхуа (Китай) синтезировали молекулу, напоминающую фрагмент такого вещества. Однако группа под руководством кристаллографа Артёма Оганова (профессора Сколковского Института науки и технологий и Университета Нью-Йорка, а также заведующего лабораторией Московского физико-технического института) с помощью методов компьютерного моделирования продемонстрировала, что подобная структура не может быть плоской и стабильной, предложив альтернативное строение листа борофена.
По словам Оганова,
результаты расчётов заставили сомневаться в том, что синтез этого материала вообще возможен, поскольку атомы бора “предпочитали” собираться в наночастицы, “разгладить” которые по его мнению было бы непросто. Кроме того, бор образует стабильные соединения почти со всеми известными элементами.
Однако учёным из Аргоннской национальной лаборатории и Северо-Западного университета (США) удалось найти элегантное решение: борофен выращивали на подложке из серебра. Эти элементы слабо взаимодействуют друг с другом, благодаря чему и получилось синтезировать новый материал. Атомы бора напылялись с помощью техники электронно-лучевого испарения, это позволило избежать использования высокотоксичных газов.
Получившийся материал затем исследовался с помощью методов электронной и сканирующей туннельной микроскопии. Сравнение экспериментальных результатов с теоретическим предсказанием структуры борофена, проведённым сотрудником Оганова, профессором Сянфеном Чжоу (Xiang-Feng Zhou), подтвердило, что был получен именно этот материал.
«Иногда экспериментаторы синтезируют материал и просят нас определить его структуру. Порой получается наоборот: мы делаем предсказания первыми, и эксперимент подтверждает наши открытия. Теория и эксперимент движутся рука об руку, и от этого сотрудничества выигрывает любое исследование», — комментирует текущую работу Оганов.
Борофен получился не плоским, а, как и предсказывали Чжоу и Оганов, гофрированным. Если другие двумерные материалы выглядят как плоскости, борофен напоминает лист гофрированного картона, изгибающийся вверх и вниз в зависимости от связей между атомами бора.
Такая структура делает борофен анизотропным, то есть механические и электронные свойства этого материала зависят от выбранного направления, по которому он исследуется. Борофен, как и графен, проводит электрический ток, поэтому это первый известный учёным двумерный анизотропный металл.
На этом необычные свойства этого материала не заканчиваются. Согласно теоретическим предсказаниям, борофен обладает наибольшей прочностью на разрыв по сравнению с любым другим известным материалом.
«По всей видимости мы нашли лидера по прочности среди двумерных материалов», — заявил Гайзенгер.
Безусловно, борофен нуждается в дальнейшем изучении, но авторы исследования уверены в том, что новый материал обладает большим потенциалом для применения в наноэлектронике.
Результаты исследования были опубликованы в престижном научном журнале Science.
- Источник(и):
-
1. vesti.ru
- Войдите на сайт для отправки комментариев