Доказана возможность использования наноколец в солнечных батареях

Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.

Какое-то время продолжим трудится на общее благо по адресу https://n-n-n.ru.
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.

Спасибо, ждём вас на N-N-N.ru

Когда Рамеш Джасти начал изготавливать крошечные органические круглые структуры, используя атомы углерода, идея была в том, чтобы улучшить углеродные нанотрубки, разрабатываемые для применения в электронных или оптических устройствах. Ученый быстро понял, что его технология может быть полезна сама по себе.

В новой статье Джасти с коллегами из университета Орегона показали, что нанокольца, называемые в химии циклопарафенилены — могут быть изготовлены из множества атомов, причем не только углеродных. Нанокольца эффективно поглощают и распределяют энергию. Ученые предполагают применять данные структуры в солнечных батареях, органических светодиодах или в качестве инновационных датчиков для медицинских исследований.

Исследование было опубликовано в издании ACS Central Science. Статья является концептуальным доказательством процесса, который потребует дополнительных исследований, чтобы завершить его до того, как удастся понять полновесный эффект новых наноколец.

ramesh-jasti.jpg

Изменение оптических и электронных свойств

Нанокольца величиной 1 нанометр представляют собой новый класс структур — между длинноцепочечными полимерами и маленькими маловесными молекулами — для применения в энергетических или световых устройствах, отметил Джасти.

«Эти структуры дополняют набор инструментов и обеспечивают новый способ изготовления органических электронных материалов», сказал Джасти. „Циклические составы могут вести себя так, словно они очень длинные, как полимеры, хотя по факту состоят из семи-восьми элементов. Мы показали, что за счет добавления неуглеродных атомов можем менять оптические и электронные свойства“.

Решение проблемы контроля ширины запрещенной зоны

Нанокольца помогли решить задачи, связанные с материалами с контролируемыми показателями ширины запрещенной зоны — энергиями, которые располагаются между кластерами обшивки и проводимости, и которые очень важны для производства органических полупроводников. Лучше всего в настоящее время работают материалы на основе полимеров.

«Если вы сможете контролировать ширину запрещенной зоны, то сумеете управлять также излучаемым цветом и светом», сообщил Джасти. „В электронных устройствах необходимо добиться соответствия энергии электродам. В фотогальванике солнечный свет, который вы намерены уловить, должен соответствовать ширине запрещенной зоны, чтобы достичь высокой эффективности. Мы установили, что чем меньше нанокольца, тем меньше и ширина запрещенной зоны“.

Чтобы доказать работоспособность подхода, ученые синтезировали самые разные нанокольца с помощью атомов углерода и азота. «Мы выяснили, что заряженный азот делает нанокольцо акцептором электронов, в то время как другая часть становится донором», сообщил Джасти.

«Добавление других элементов, например, азота, дает нам еще один метод управления уровнями энергии помимо размера наноколец. И теперь мы показали, что свойствами наноколец легко можно управлять», заключил ученый. „Ключевое открытие состоит в том, что любой атом можно заменить, что может оказаться полезным для любых видов применения полупроводников“.

Пожалуйста, оцените статью:
Ваша оценка: None Средняя: 4.7 (3 votes)
Источник(и):

innovanews.ru