Простая технология позволила создать самый быстрый гибкий транзистор

Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.

Какое-то время продолжим трудится на общее благо по адресу https://n-n-n.ru.
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.

Спасибо, ждём вас на N-N-N.ru

Уникальный метод, разработанный в Висконсинском университете (UW-Madison), позволит производителям быстро и дёшево изготавливать высокопроизводительные транзисторы в рулонах пластика.

Экспериментальное устройство, напечатанное с помощью техники, так называемой, наноимпринт-литографии, функционировало с рекордной частотой 38 ГГц, а результаты симуляций говорят о возможности увеличения рабочей частоты до 110 ГГц.

Помимо перспектив применения в сверхбыстродействующих процессорах, такие устройства смогут передавать и получать данные и энергию беспроводным путём, что открывает совершенно небывалые возможности для таких приложений, как носимая электроника и автономные сенсоры IoT.

Методика изготовления гибких транзисторов описывается в статье, которая вчера вышла в журнале Scientific Reports. Она свободна от недостатков традиционных литографических технологий: не имеет дифракционных ограничений, не нуждается в высокой температуре и не требует разделения технологического процесса на несколько этапов.

Схема создается в гибкой мембране кристаллического кремния, расположенной на подложке из термопластика — полиэтилентерефталата (ПЭТ). Вместо традиционного избирательного внесения примесей, авторы подвергают легированию весь слой кремния. Затем, поверх него наносят слой фоторезиста и сфокусированным электронным лучом вырезают в нем нужные формы, размером до 10 нм. С помощью полученной маски сухим травлениям в кремнии с высокой точностью создают канавки с затворами поверх них, действующими как коммутаторы.

Получаемый транзистор благодаря трёхмерной структуре движения зарядов потребляет меньше энергии и работает более эффективно, а высокая по сравнению с обычными производственными процессами детализация позволяет умещать на чипе большее количество таких устройств.

Авторы из UW-Madison утверждают, что их технология легко масштабируется на сценарии массового производства и позволяет тиражировать структуру транзистора на рулонах гибкого пластика.

Пожалуйста, оцените статью:
Ваша оценка: None Средняя: 5 (2 votes)
Источник(и):

ko.com.ua