Ученые ИЯФ СО РАН разработали уникальный вигглер для европейских исследователей
Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.
Какое-то время продолжим трудится на общее благо по адресу
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.
Спасибо, ждём вас на N-N-N.ru
Ученые Института ядерной физики им. Г. И. Будкера СО РАН (ИЯФ СО РАН) разработали и изготовили для Технологического института Карлсруэ (Германия) и ЦЕРН (Швейцария) сверхпроводящий вигглер — устройство, предназначенное для генерации синхротронного излучения. Сейчас новосибирская аппаратура, стоимость которой составляет около 1 миллиона евро, установлена на ускорительном комплексе ANKA в Германии. Здесь с ее помощью будут проводиться эксперименты с биологическими объектами, а для исследователей из ЦЕРН вигглер станет испытательным полигоном по отработке технологий для разрабатываемого линейного коллайдера CLIC.
Обычно в качестве сверхпроводящего материала при создании вигглера используется ниобий — титановый сплав, который при охлаждении до криогенных температур переходит в сверхпроводящее состояние. Поэтому традиционно для получения и поддержания необходимых условий сверхпроводящие магниты погружаются в сосуд с жидким гелием. Сотрудники ИЯФ СО РАН реализовали принципиально новую систему охлаждения.
«Представьте, — объясняет кандидат технических наук, старший научный сотрудник ИЯФ СО РАН Виталий Аркадьевич Шкаруба, — в помещении комнатная температура, а внутри установки она должна быть примерно на 300 градусов меньше, то есть 4 Кельвина (– 269 С). Для теплоизоляции магнита используется специальное устройство — криостат, в который обычно заливается жидкий гелий, чтобы поддерживать низкую температуру. Если внутри такого криостата что-то сломалось, приходится полностью разрезать герметичный сосуд, доставать магнит, а затем опять использовать сварку. Мы же сделали вигглер с криостатом нового типа, в котором магнит не погружен в жидкий гелий. Охлаждение производится специальными криорефрежираторами через систему тепловых контактов. В нашем случае нужно просто нажать кнопку, и через несколько дней магнит, охладившись до нужной температуры, сможет работать в этом режиме годами».
Руководитель Лаборатории технологий сверхпроводящих ондуляторов Технологического института Карлсруэ Аксель Бернхард сообщил, что вигглер будет использоваться в качестве источника излучения для рентгеноскопического каналана источнике СИ ANKA. «Он обеспечит яркие жесткие рентгеновские лучи для микроскопа MiQA, который будет применяться в материаловедении и науках о жизни», — пояснил Аксель Бернхард.
Вигглеры могут использоваться не только как генераторы СИ для фундаментальных и прикладных исследований в химии, биологии, материаловедении. Их применяют и в накопителях заряженных частиц для уменьшения размеров и повышения интенсивности сгустков. Новая разработка ИЯФ СО РАН станет прототипом вигглера для затухательных колец разрабатываемого в ЦЕРН линейного коллайдера CLIC. Прежде чем принять решение о строительстве нового масштабного ускорителя, который по своим размерам будет превосходить Большой адронный коллайдер, специалисты ЦЕРН отрабатывают необходимые критические технологии.
«Таких вигглеров, — комментирует кандидат физико-математических наук, заведующий научно-исследовательским сектором ИЯФ СО РАН Константин Владимирович Золотарев, — в проектируемом ускорительном комплексе должно быть около сотни. Прежде чем запускать пучки электронов и позитронов в сам линейный ускоритель, нужно сжать их, увеличив плотность. Подготовка таких пучков осуществляется в специальных затухательных кольцах. Каждое из них состоит из двух полуколец, между которыми находятся длинные прямолинейные промежутки с вигглерами. Проходя через них, отдельные частицы сгустка излучают, уменьшается их поперечный импульс и фазовый объем сгустка, и увеличивается плотность пучка. Делать вигглеры по обычной схеме в данном случае было бы очень ненадежно, а новая конструкция криостата обеспечивает возможность быстрого доступа к элементам магнитной системы, позволяет сократить время ремонтных работ и технического обслуживания. Кроме того, ЦЕРН планирует испытать в нашем криостате другие варианты магнитных систем».
Европейские ученые уже приступили к работе с вигглером.
«Мы начали с базовых экспериментов по проверке работоспособности и надежности всей системы, — комментирует Аксель Бернхард, — в частности, криогенной. В затухательных кольцах CLIC будет напряженный режим работы для сверхпроводящих магнитов. В наших первых тестах вигглер оказался очень надежным. В настоящее время мы готовимся к экспериментам по изучению влияния вигглера на динамику пучков в накопителе ANKA. Рентгеновский микроскоп планируем ввести в эксплуатацию во второй половине 2016 года».
Пресс-служба ИЯФ СО РАН
Фото предоставлено ИЯФ СО РАН
- Источник(и):
- Войдите на сайт для отправки комментариев