Достигнуто управляемое взаимодействие света и вещества при комнатной температуре
Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.
Какое-то время продолжим трудится на общее благо по адресу
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.
Спасибо, ждём вас на N-N-N.ru
Ученым удалось добиться управляемого сильного взаимодействия вещества и излучения при комнатной температуре. Это достижение закладывает основы для реализации практических устройств на основе квантовых технологий фотоники. Статья с результатами опубликована в журнале Science Advances.
Фотоника — это раздел физики, в рамках которого исследуют фундаментальные и прикладные аспекты передачи и обработки оптических сигналов. В некотором смысле фотоника предлагает заменить переносчиков информации с электронов на фотоны. Частицы света не обладают массой и подвержены намного меньшим потерям, однако гораздо слабее электронов взаимодействуют с веществом. Чтобы усилить это взаимодействие, можно перейти к квантовому режиму взаимодействия, но обычно для этого требуются криогенные температуры, что препятствует широкому распространению подобных технологий вне лабораторий.
В новой работе физики работают с процессом спонтанного излучения, когда объект (в данном случае квантовая точка) испускает фотон, возвращаясь из возбужденного состояния в основное. Обычно этот процесс необратим, но если обеспечить связь между источником и оптическим резонатором, то фотон останется в непосредственной близости от квантовой точки в течение достаточно долгого времени, существенно увеличивая вероятность поглощения.
«Такое обращение спонтанного излучения очень важно для квантовых технологий и обработки сигнала, так как оно обеспечивает обмен квантовой информацией между веществом и излучением, сохраняя квантовые свойства обоих», — поясняет соавтор Ортвин Хесс из Имперского колледжа Лондона.
Чтобы обеспечить перепоглощение фотона, авторы использовали нанорезонатор в виде очень тонкой щели в золотой фольге. В результате удалось «запереть» электромагнитную энергию фотона в области, не сильно превышающей по размеру саму квантовую точку. Подобное уже сделали другие коллективы, но в новой работе физики смогли контролировать силу взаимодействия квантовой точки и резонатора. Они достигли этого за счет того, чтобы присоединить резонатор к зонду атомного силового микроскопа, способного двигаться с нанометровой точностью. В будущем авторы надеются создать систему, силой взаимодействия в которой можно будет управлять дистанционно — например, при помощи внешнего источника фотонов.
- Источник(и):
- Войдите на сайт для отправки комментариев