Модель обучили предсказывать заболевания по 3D-структуре белка

Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.

Какое-то время продолжим трудится на общее благо по адресу https://n-n-n.ru.
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.

Спасибо, ждём вас на N-N-N.ru

Ученые из России, Германии и Индии создали модель на основе машинного обучения, которая предсказывает вредные мутации мембранных белков по их 3D-моделям. Статья, посвященная результатам исследования, опубликована в журнале Plos One.

Секвенирование позволяет «читать» последовательность ДНК и РНК. Первая дает развернутую информацию обо всех генах организма, вторая — сжатую информацию обо всех активных генах организма. Замены одного нуклеотида могут приводить к синтезу «неправильного» белка, который может быть как лучше, так и (как правило) хуже прежнего. Такие нарушения называют генетическими заболеваниями, а секвенирование помогает их выявлять.

Ученые из Сколковского института науки и технологий, Технического университета Мюнхена, Санкт-Петербургского политехнического университета и Индийского технологического института Мадраса разработали метод на основе машинного обучения, позволяющий анализировать 3D-модели белков и предсказывать болезнетворность встречающихся мутаций. Метод адаптирован для белков, встраивающихся в клеточные мембраны. Мембранные белки составляют 25—30% от всех белков в клетке. Именно они часто служат мишенями для лекарств.

«В этой работе мы использовали сочетание 1D-информации об аминокислотных последовательностях белков и 3D-информации об атомарных структурах этих белков для создания эффективной модели на основе машинного обучения, которая позволяет выявлять аминокислотные замены в мембранных белках, непосредственно связанные с различными заболеваниями», — рассказал ведущий автор исследования, старший преподаватель Сколтеха Петр Попов.

Пожалуйста, оцените статью:
Ваша оценка: None Средняя: 5 (1 vote)
Источник(и):

Индикатор