Разработан композитный материал для гибких элементов памяти
Друзья, с момента основания проекта прошло уже 20 лет и мы рады сообщать вам, что сайт, наконец, переехали на новую платформу.
Какое-то время продолжим трудится на общее благо по адресу
На новой платформе мы уделили особое внимание удобству поиска материалов.
Особенно рекомендуем познакомиться с работой рубрикатора.
Спасибо, ждём вас на N-N-N.ru
Исследователи Института физики полупроводников им. А.В. Ржанова СО РАН создали новый материал для мемристоров (резисторов, обладающих памятью): композит из наночастиц оксида ванадия покрытых фторированным графеном. Разработанные структуры могут использоваться для изготовления элементов памяти гибкой электроники: они выдерживают многочисленные деформации, способны хранить и многократно перезаписывать информацию всего за 30 наносекунд.
Подробности опубликованы в журнале Advanced Electronic Materials.
Мемристор — микроэлектронный компонент, изменяющий свое сопротивление в зависимости от протекшего через него электрического заряда. При подаче установочного (высокого напряжения) мемристор переходит в проводящее (открытое) состояние, а при смене полярности напряжения и приложении напряжения сброса, также высокого, структура прекращает проводить электрический ток — становится закрытой.
Однако если использовать относительно низкие напряжения — их называют считывающими — можно прочитать информацию, зафиксированную на мемристоре в момент подачи высокого напряжения, не изменив состояния прибора. Время переключения измеряется в наносекундах, что примерно в 1000 раз меньше, чем у распространенной сейчас флэш-памяти. Соответственно, мемристор может выступать и как быстродействующая ячейка памяти, и как компонент нейроморфных сетей. Более того, системы с кроссбар архитектурой (пересекающиеся проводящие дорожки с мемристорами вместо транзисторов в узлах) очень просты в изготовлении.
«Перед нами стояла задача создать мемристорный материал для гибкой электроники, для этих целей хорошо подходит фторированный графен: он сохраняет стабильность при многократных переключениях, устойчив к изменениям температуры, механическим воздействиям. Однако, его недостатком является небольшая (1–2 порядка) разница токов для открытого и закрытого состояния мемристора. Чтобы решить проблему мы добавляли к фторированному графену материалы, позволяющие увеличить резистивный эффект. Лучший результат показали композитные пленки, состоящие из фторированного графена и наночастиц оксида ванадия — разница между токами в открытом и закрытом состояниях, достигала девяти порядков. Если сравнивать с мировой практикой, аналогичные величины наблюдают при использовании полимеров или оксида графена, но первые нестабильны, легко деградируют, а второй позволяет переключать мемристор лишь сотни раз», — рассказывает первый автор статьи Артем Ильич Иванов, младший научный сотрудник лаборатории Физики и технологии трехмерных наноструктур ИФП СО РАН, возглавляемой доктором физико-математических наук профессором Виктором Яковлевичем Принцем
Большая разница токов в открытом и закрытом состояниях, позволяет создать систему из нескольких тысяч мемристоров. Это, с одной стороны, увеличивает емкость памяти, а с другой — дает возможность создавать нейроморфные сети, по принципу работы схожие с человеческим мозгом.
Каждый «шарик» оксида ванадия (частицы способной проводить электрический ток), благодаря хорошей адгезии, покрыт тонким диэлектрическим слоем фторографена. В такой конфигурации лучше сохраняются свойства материала и композит работает дольше.
«Наночастицы оксида ванадия — это кристаллогидраты, содержащие молекулы воды (диполи). Под действием внешнего электрического напряжения они ориентируются по линиям поля и в результате возникают внутренние электрические поля между частицами оксида ванадия разделенных барьерами из фторированного графена, и композит переходит в проводящее состояние. Подача напряжения обратной полярности приводит к разориентации диполей, и переключению всей структуры в высокоомное (непроводящее) состояние», — объясняет Артем Иванов.
Мемристоры из нового композитного материала печатают на 2D-принтере: готовятся специальные чернила и машина наносит их на полимерный материал. Напечатанные структуры можно сгибать практически вдвое — проводящие компоненты не пострадают и продолжат переключаться.
«В нашей лаборатории разработана надежная, удобная и воспроизводимая технология получения фторированного графена, которой больше нет нигде в мире. 2D-печать, в свою очередь, не требует дорогостоящего оборудования, больших финансовых вложений. Конечно, персональный компьютер напечатать невозможно, но, например, телефоны сейчас стремятся сделать гибкими, как и другие гаджеты: фитнес-браслеты, носимые сенсорные системы для мониторинга состояния здоровья и так далее», — комментирует ведущий научный сотрудник лаборатории физики и технологии трехмерных наноструктур ИФП СО РАН доктор физико-математических наук Ирина Вениаминовна Антонова.
Переключать мемристоры, созданные новосибирскими физиками из открытого (Ion) в закрытое (Ioff) состояние, попросту говоря перезаписать информацию, можно до миллионов раз в зависимости от параметров структур. По мировым стандартам — это в сочетании с разницей между токами (Ion/Ioff) в 6—9 порядков и наносекундными временами переключения — рекордные параметры для гибкой электроники.
В дальнейшем исследователи планируют протестировать способность отдельных наночастиц композита выступать в качестве мемристоров, чтобы достичь предельной плотности компонентов.
Исследование выполнялось при поддержке гранта РНФ 15–12–00008 «2D-печатные технологии получения материалов и электронных устройств на основе графена» и бюджетного проекта «Структуры и новые материалы на основе функционализированного графена и мультиграфена для электронных приложений».
- Источник(и):
- Войдите на сайт для отправки комментариев